Решите с решением и дано.Желательно на листке В равнобндренном треугольнике ABC угол при вершине равен 146 градусов.Найдите угол при основании равнобедренного треугольника.ответ дайте в градусах.
2.В треугольнике ABC угол ABC= 29градусов,угол ACB= 65 градусов.Найдите внешний угол при вершине A. ответ дайте в градусах
РА=10 см, РО=8 см, <POA=90°
ΔPOA. по теореме Пифагора: AO²=PA²-PO²
AO²=10²-8², AO²=36, AO =6 см.
ΔADC: AC=2AO, AC=12 см, AD=DC=a
по теореме Пифагора: AO²=AD²+CD²
12²=a²+a², 144=2a², a²=72, a=√72, a=6√2 см
ответ: сторона основания АВ=6√2 см
2. Sбок.пов. =(1/2)Pосн*h
h - апофему боковой грани правильной пирамиды найдем по теореме Пифагора из ΔАКР: PK_|_AB, AK=(1/2)AB, AK=3√2 см
PA²=AK²+PK², 10²=(3√2)²+PK², PK²=100-18, PK²=82, PK=√82 см
S=(1/2)*4*6√2*√82=12√164=12√(4*41)=24√41
S бок.=24√41 см²
По теореме косинусов составим 3 уравнения, выразив основания "а" через боковые стороны и угол при вершине.
а² = 3²+4²-2*3*4*cosα = 25 - 24*cosα
a² = 4²+5²-2*4*5*cosβ = 41 - 40*cosβ
a² = 5²+3²-2*5*3*cosω = 34 - 30*cosω
Получаем 4 неизвестных: а, α, β и ω.
Поэтому добавляем четвёртое уравнение:
α + β + ω = 2π.
Ниже приведено решение системы этих уравнений методом итераций:
α градус α радиан cos α a² = a =
25 24 150.0020 2.6180 -0.8660 45.7850 6.7665
41 40 96.8676 1.6907 -0.1196 45.7830 6.7663
34 30 113.1304 1.9745 -0.3928 45.7848 6.7664.
С точностью до третьего знака получаем значение стороны равностороннего треугольника, равной 6,766 единиц.