Найдем <B.Из теоремы о сумме углов тр-ка он равен 75 градусам. По теореме синусов имеем,что CB/sinA=AC/sinB=AB/sinC. Значит, AC=(CB*sinB)/sinA=(2 корня из 3 * sin 75)/корень из 3/2=(2 корня из 3 *2*sin75)/корень из 3 (далее корень из трех сокращается)=4 sin75,что приблизительно равно 3,8636. Аналогично рассуждая, получаем,что AB=(CB*sinC)/sinA=4/корень из 2,избавившись от иррациональности в знаменателе,получим,что AB=2 корням из 2. Для нахождения площади воспользуемся формулой S=1/2 AB*AC*sinA=(2 корня из 2 *3,8636)2*корень из 3/2=(двойки сокращаются)=корень из 2 *3,8636*корень из 3/2.Если очень хочется,то можно сократить 3,8636 и 2, тогда получится 1,9318*корень из 2*корень из 3. ответ:2 корня из 2;3,8636;1,9318*корень из 2*корень из 3;75 градусов.
Найдем второй отрезок гипотенузы для каждого случая.
Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное для отрезков, на которые делится гипотенуза этой высотой.⇒
a)
СD²=АD•ВD
16=4•BD
BD=16:4=4⇒
Высота СD - медиана и биссектриса ∆ АВС и делит его на два равнобедренных прямоугольных треугольника.
Острые углы такого треугольника равны 45°
б)
СD²=АD•ВD
16=4√3•BD⇒
BD=16:4√3=4/√3
Из ∆ САD:
tg∠САD=CD:AD=4:4√3=1/√3- это тангенс 30°
Из ∆ CВD:
tg∠СBD=BD:CD=(4/√3):4=√3 - это тангенс 60° Острые углы этого треугольника 30° и 60°
По теореме синусов имеем,что CB/sinA=AC/sinB=AB/sinC.
Значит, AC=(CB*sinB)/sinA=(2 корня из 3 * sin 75)/корень из 3/2=(2 корня из 3 *2*sin75)/корень из 3 (далее корень из трех сокращается)=4 sin75,что приблизительно равно 3,8636.
Аналогично рассуждая, получаем,что AB=(CB*sinC)/sinA=4/корень из 2,избавившись от иррациональности в знаменателе,получим,что AB=2 корням из 2.
Для нахождения площади воспользуемся формулой S=1/2 AB*AC*sinA=(2 корня из 2 *3,8636)2*корень из 3/2=(двойки сокращаются)=корень из 2 *3,8636*корень из 3/2.Если очень хочется,то можно сократить 3,8636 и 2, тогда получится 1,9318*корень из 2*корень из 3.
ответ:2 корня из 2;3,8636;1,9318*корень из 2*корень из 3;75 градусов.
Найдем второй отрезок гипотенузы для каждого случая.
Высота прямоугольного треугольника, проведенная из вершины прямого угла, есть среднее пропорциональное для отрезков, на которые делится гипотенуза этой высотой.⇒
a)
СD²=АD•ВD
16=4•BD
BD=16:4=4⇒
Высота СD - медиана и биссектриса ∆ АВС и делит его на два равнобедренных прямоугольных треугольника.
Острые углы такого треугольника равны 45°
б)
СD²=АD•ВD
16=4√3•BD⇒
BD=16:4√3=4/√3
Из ∆ САD:
tg∠САD=CD:AD=4:4√3=1/√3- это тангенс 30°
Из ∆ CВD:
tg∠СBD=BD:CD=(4/√3):4=√3 - это тангенс 60°
Острые углы этого треугольника 30° и 60°