Угол АВО = угол ОВС; угол АСО = угол ОСВ потому что ОВ и ОС - биссектрисы. Но поскольку ВМ=МО, то треугольник ВОМ равнобедренный, и угол МВО = угол МОВ. И, получается, угол МОВ = угол ОВС, а значит, отрезок ОМ параллелен ВС (накрест лежащие углы равны). Аналогично раз CN=ON, то угол NOC = угол NCO, и отрезок NO параллелен ВС. А раз оба отрезка параллельны ВС, то и между собой они параллельны, а поскольку они проходят через одну точку, значит, лежат на одной прямой. Следовательно, точки M, O и N лежат на одной прямой.
Определение: Прямая пересекающая плоскость, называется перпендикулярной этой плоскости, если она перпендикулярна любой прямой, которая лежит в данной плоскости и проходит через точку пересечения.
Следовательно, КС⊥СВ и CD. Углы КСВ и КСD- прямые, и ∆ КСВ и ∆ КСD - прямоугольные с прямыми углами при С.
Проекции наклонных КЕ и КА перпендикулярны соответственно сторонам EF и AF шестиугольника.
По т. о трех перпендикулярах КА ⊥ AF, а СЕ перпендикулярна EF. ⇒
∆ EFK и АFК - прямоугольные с прямыми углами А и Е.
∆ DEK и АВК тупоугольные, т.к. КD и КВ образуют с DE и ВС тупые углы.
Но поскольку ВМ=МО, то треугольник ВОМ равнобедренный, и угол МВО = угол МОВ. И, получается, угол МОВ = угол ОВС, а значит, отрезок ОМ параллелен ВС (накрест лежащие углы равны).
Аналогично раз CN=ON, то угол NOC = угол NCO, и отрезок NO параллелен ВС.
А раз оба отрезка параллельны ВС, то и между собой они параллельны, а поскольку они проходят через одну точку, значит, лежат на одной прямой. Следовательно, точки M, O и N лежат на одной прямой.
Определение: Прямая пересекающая плоскость, называется перпендикулярной этой плоскости, если она перпендикулярна любой прямой, которая лежит в данной плоскости и проходит через точку пересечения.
Следовательно, КС⊥СВ и CD. Углы КСВ и КСD- прямые, и ∆ КСВ и ∆ КСD - прямоугольные с прямыми углами при С.
Проекции наклонных КЕ и КА перпендикулярны соответственно сторонам EF и AF шестиугольника.
По т. о трех перпендикулярах КА ⊥ AF, а СЕ перпендикулярна EF. ⇒
∆ EFK и АFК - прямоугольные с прямыми углами А и Е.
∆ DEK и АВК тупоугольные, т.к. КD и КВ образуют с DE и ВС тупые углы.