Угол В 90 градусов, значит угол А плюс Угол С = 180-90=90 градусов.
Сумма (уменьшенных в два раза биссектрисами) углов при вершинах А и С в треугольнике АОВ будет в два раза меньше, т.е. 90:2= 45 градусов.
Сумма углов в треугольнике = 180 градусам, тогда искомый угол АОВ будет равен 180-45=135 градусов.
Задача 2.
В задаче дано, что угол при вершине В равен 60 градусов, при этом DBA = 30 градусам (получается половина 60ти), получается, что DB - биссектриса. Особенным свойством биссектрисы является то, что каждая точка биссектрисы равноудалена от сторон угла. Расстояние до стороны ВА дано и равно 4 (отрезок DA), расстояние от точки Д до стороны СВ будет таким же, т.е. 4.
Задание 3(Первое фото)
Задание 4
67градусов и 30 минут=45 градусов + 22 градуса 30 минут.
1. Строите развернутый угол (180 градусов). С циркуля и линейки делите его пополам. Получаете угол в 90 градусов.
2. Аналогичным образом угол в 90 градусов делите пополам, получаете два смежных угла по 45.
3. Один из этих углов оставляете в покое, другой аналогично делите пополам. Это будут два угла по 22 градуса 30 минут.
4. Один из полученных маленьких углов и оставленный в покое угол в 45 градусов дадут в сумме 67 градусов 30 минут.
1) Наверное, все-таки, РАВНЫЕ отрезки, а не РАЗНЫЕ ?..)) По теореме Фалеса параллельные прямые откладывают на сторонах угла пропорциональные отрезки. Так как оба отрезка равны, то прямая, проведенная через концы этого отрезка будет параллельна основанию треугольника и, следовательно, будет перпендикулярна медиане к основанию. Последнее следует из того, что в равнобедренном треугольнике медиана к основанию является также биссектрисой угла при вершине и высотой данного треугольника. Так как данный отрезок перпендикулярен медиане и делится ей пополам так же, как и основание, можно утверждать, что расстояния от концов отрезка до любой точки на медиане будут равны между собой.
2) Так как CED - равнобедренный, то ∠ECD = ∠EDC => ∠ECM = ∠MCD = ∠EDH = ∠HDC Тогда ΔHDC = ΔMCD по стороне и двум углам: (CD - общая, ∠HDC = ∠MCD, ∠HCD = ∠MDC) Отсюда следует, что HC = MD.
В ΔСАН и ΔMAD: HC = MD, ∠HCM = ∠MDA, ∠MAD = ∠HAC => эти треугольники равны по стороне и двум углам
Задача 1.
Угол В 90 градусов, значит угол А плюс Угол С = 180-90=90 градусов.
Сумма (уменьшенных в два раза биссектрисами) углов при вершинах А и С в треугольнике АОВ будет в два раза меньше, т.е. 90:2= 45 градусов.
Сумма углов в треугольнике = 180 градусам, тогда искомый угол АОВ будет равен 180-45=135 градусов.
Задача 2.
В задаче дано, что угол при вершине В равен 60 градусов, при этом DBA = 30 градусам (получается половина 60ти), получается, что DB - биссектриса. Особенным свойством биссектрисы является то, что каждая точка биссектрисы равноудалена от сторон угла. Расстояние до стороны ВА дано и равно 4 (отрезок DA), расстояние от точки Д до стороны СВ будет таким же, т.е. 4.
Задание 3(Первое фото)
Задание 4
67градусов и 30 минут=45 градусов + 22 градуса 30 минут.
1. Строите развернутый угол (180 градусов). С циркуля и линейки делите его пополам. Получаете угол в 90 градусов.
2. Аналогичным образом угол в 90 градусов делите пополам, получаете два смежных угла по 45.
3. Один из этих углов оставляете в покое, другой аналогично делите пополам. Это будут два угла по 22 градуса 30 минут.
4. Один из полученных маленьких углов и оставленный в покое угол в 45 градусов дадут в сумме 67 градусов 30 минут.
По теореме Фалеса параллельные прямые откладывают на сторонах угла пропорциональные отрезки. Так как оба отрезка равны, то прямая, проведенная через концы этого отрезка будет параллельна основанию треугольника и, следовательно, будет перпендикулярна медиане к основанию. Последнее следует из того, что в равнобедренном треугольнике медиана к основанию является также биссектрисой угла при вершине и высотой данного треугольника.
Так как данный отрезок перпендикулярен медиане и делится ей пополам так же, как и основание, можно утверждать, что расстояния от концов отрезка до любой точки на медиане будут равны между собой.
2) Так как CED - равнобедренный, то ∠ECD = ∠EDC =>
∠ECM = ∠MCD = ∠EDH = ∠HDC
Тогда ΔHDC = ΔMCD по стороне и двум углам:
(CD - общая, ∠HDC = ∠MCD, ∠HCD = ∠MDC)
Отсюда следует, что HC = MD.
В ΔСАН и ΔMAD: HC = MD, ∠HCM = ∠MDA, ∠MAD = ∠HAC =>
эти треугольники равны по стороне и двум углам