Доказать что треугольник АОК равен треугольнику ВОС.
Доказательство:
1) Рассмотрим треугольник АОК и ВОС. У них АО = ОС, ВО = ОК, угол АОК = углу ВОС так, как они являются вертикальными, тогда по двум сторонам и углу между ними треугольники АОК = ВОС. Значит АК = ВС;
2) Рассмотрим треугольник АОВ и КОС. У них АО = ОС, ВО = ОК, угол АОВ = углу КОС так, как они являются вертикальными, тогда по двум сторонам и углу между ними треугольники АОВ = КОС. Значит АВ = КС;
3) Треугольник АВС = СКА по трем сторонам, так как АК = ВС, АВ = КС и ВК - общая. Доказано.
1) Формула объёма конуса V=S•H:3=πr²H:3
Формула объёма шара
V=4πR³:3
Осевое сечение данного конуса - равносторонний треугольник, т.к. его образующая составляет с плоскостью основания угол 60°.
Выразим радиус r конуса через радиус R шара.
r=2R:tg60°=2R/√3
V(кон)=π(2R/√3)²•2R²3=π8R³/9
V(шара)=4πR³/3
V(кон):V(шар)=[π8R³/9]:[4πR³/3]=(π•8R³•3/9)•4πR³=2/3
———————
2) Формула объёма цилиндра
V=πr²•H
Формула площади осевого сечения цилиндра
S=2r•H
Разделим одну формулу на другую:
(πr²•H):(2r•H)=πr/2⇒
96π:48=πr/2⇒
4π=πr
r=4
Из площади осевого сечения цилиндра:
Н=S:2r=48:8=6
На схематическом рисунке сферы с вписанным цилиндром
АВ- высота цилиндра, ВС - его диаметр,
АС - диаметр сферы.
АС=√(6²+8²)=√100=10
R=10:2=5
S(сф)=4πR8=4π•25=100π см²
Объяснение:
Дано:
Отрезки АС и ВК пересекаются в точке О,
АО = ОС,
ВО = ОК.
Доказать что треугольник АОК равен треугольнику ВОС.
Доказательство:
1) Рассмотрим треугольник АОК и ВОС. У них АО = ОС, ВО = ОК, угол АОК = углу ВОС так, как они являются вертикальными, тогда по двум сторонам и углу между ними треугольники АОК = ВОС. Значит АК = ВС;
2) Рассмотрим треугольник АОВ и КОС. У них АО = ОС, ВО = ОК, угол АОВ = углу КОС так, как они являются вертикальными, тогда по двум сторонам и углу между ними треугольники АОВ = КОС. Значит АВ = КС;
3) Треугольник АВС = СКА по трем сторонам, так как АК = ВС, АВ = КС и ВК - общая. Доказано.