Дано: ΔМNF - прямоугольный, ∠N=90°, ∠M=30°, FD - биссектриса, FD=20 см.
Найти МN.
∠МFN=90-30=60°
Рассмотрим ΔМFD - равнобедренный, т.к. ∠DFM=30° по свойству биссектрисы и ∠DMF=30° по условию. Значит DM=DF=20 cм.
Рассмотрим ΔDFN - прямоугольный, ∠DFN=30° по свойству биссектрисы, тогда DN=1\2 DF=20:2=10 cм как катет, лежащий против угла 30°.
MN=MD+DN=20+10=30 см.
ответ: 30 см.
Дано: ΔМNF - прямоугольный, ∠N=90°, ∠M=30°, FD - биссектриса, FD=20 см.
Найти МN.
∠МFN=90-30=60°
Рассмотрим ΔМFD - равнобедренный, т.к. ∠DFM=30° по свойству биссектрисы и ∠DMF=30° по условию. Значит DM=DF=20 cм.
Рассмотрим ΔDFN - прямоугольный, ∠DFN=30° по свойству биссектрисы, тогда DN=1\2 DF=20:2=10 cм как катет, лежащий против угла 30°.
MN=MD+DN=20+10=30 см.
ответ: 30 см.