АВ - биссектриса, АС - медиана, ВС - отрезок между точками пересечения биссектрисы и медианы со стороной треугольника.
Для начала построим треугольник АВС. Отрезок ВС - часть стороны искомого треугольника, противоположной вершине А, поэтому смело рисуем всю прямую ВС.
Вспоминаем, как ведём себя биссектриса во вписанном треугольнике. Она пересекает дугу описанной окружности, отсечённую противоположной стороной, посередине. так как на равные половинки этой дуги опираются равные вписанные углы, образованные биссектрисой из угла происхождения.
Одновременно, срединный перпендикуляр хорды проходит не только через центр описанной окружности, но и делит дуги окружности, образованные хордой, пополам, значит продолжение биссектрисы АВ и срединный перпендикуляр к стороне треугольника, содержащей отрезок ВС, пересекаются на описанной окружности. Точка С - середина будущей стороны искомого треугольника. Проведём через неё перпендикуляр прямой ВС, который пересечётся с биссектрисой АВ в точке Д.
Прямая СД проходит через центр описанной окружности, а АД - хорда. Срединный перпендикуляр к хорде АД даст нам точку Е - пересечение со срединным перпендикуляром будущей стороны искомого треугольника. Е - центр описанной окружности, проходящей через точки А и Д. Строим её, получаем точки F и G на прямой ВС.
Пусть точка С расположена между точками D и Е, то есть С ближняя к точке Е, а В дальняя от точки Е вершины треугольника АВС. Угол АВС - вписанный в окружность, он измеряется половиной дуги АС. Угол ЕАС - угол между хордой и касательной, он тоже измеряется половиной дуги АС. Значит (угол ЕАС) =(угол АВС) . Так, как АD биссектриса угла ВАС, то (угол ВАD)=(угол DАС) . (Угол ЕАD)=(угол ЕАС) +(угол CAD), (угол АDE)=(угол АВD)+(угол BAD) как внешний угол треугольника АВD. Значит (угол ЕАD)=(угол АDЕ) . Отсюда следует, что треугольник ЕАD равнобедренный, и АЕ=ЕD.
Для начала построим треугольник АВС.
Отрезок ВС - часть стороны искомого треугольника, противоположной вершине А, поэтому смело рисуем всю прямую ВС.
Вспоминаем, как ведём себя биссектриса во вписанном треугольнике. Она пересекает дугу описанной окружности, отсечённую противоположной стороной, посередине. так как на равные половинки этой дуги опираются равные вписанные углы, образованные биссектрисой из угла происхождения.
Одновременно, срединный перпендикуляр хорды проходит не только через центр описанной окружности, но и делит дуги окружности, образованные хордой, пополам, значит продолжение биссектрисы АВ и срединный перпендикуляр к стороне треугольника, содержащей отрезок ВС, пересекаются на описанной окружности.
Точка С - середина будущей стороны искомого треугольника. Проведём через неё перпендикуляр прямой ВС, который пересечётся с биссектрисой АВ в точке Д.
Прямая СД проходит через центр описанной окружности, а АД - хорда.
Срединный перпендикуляр к хорде АД даст нам точку Е - пересечение со срединным перпендикуляром будущей стороны искомого треугольника. Е - центр описанной окружности, проходящей через точки А и Д. Строим её, получаем точки F и G на прямой ВС.
Дуги FD и GD равны, значит ∠FAB=∠GAB.
FC=CG.
ΔAGF - наш треугольник.
(Угол ЕАD)=(угол ЕАС) +(угол CAD), (угол АDE)=(угол АВD)+(угол BAD) как внешний угол треугольника АВD. Значит (угол ЕАD)=(угол АDЕ) . Отсюда следует, что треугольник ЕАD равнобедренный, и АЕ=ЕD.