Чтобы найти площадь сечения, которое является кругом, нужно знать его радиус r. Найдем его, рассмотрев сечение шара плоскостью, перпендикулярной искомому сечению (тому, площадь которого мы должны найти). (Смотри рисунок.)
Рассматриваемое сечение - тоже круг, его центр О совпадает с центром шара, а радиус R = 25 см. Проведем хорду АВ. Это - диаметр искомого сечения. Расстояние до него - длина перпендикуляра, опущенного на АВ из точки О (обозначим его ОН). Длина этого перпендикуляра h = 20 см. Получился прямоугольный треугольник ОАН с гипотенузой R и катетами h и r. По теореме Пифагора найдем r:
Объяснение:
Чтобы найти площадь сечения, которое является кругом, нужно знать его радиус r. Найдем его, рассмотрев сечение шара плоскостью, перпендикулярной искомому сечению (тому, площадь которого мы должны найти). (Смотри рисунок.)
Рассматриваемое сечение - тоже круг, его центр О совпадает с центром шара, а радиус R = 25 см. Проведем хорду АВ. Это - диаметр искомого сечения. Расстояние до него - длина перпендикуляра, опущенного на АВ из точки О (обозначим его ОН). Длина этого перпендикуляра h = 20 см. Получился прямоугольный треугольник ОАН с гипотенузой R и катетами h и r. По теореме Пифагора найдем r:
.
Теперь находим площадь сечения:
≈706,86
Половина диагонали d/2 = (а/2)*√2 ≈ 16,97056.
a) Боковое ребро L = √(Н² + (d/2)²) ≈ 18,76166.
Апофема А = √(H² + (a/2)²) ≈ 14,42221.
Периметр Р = 4a = 96.
Площадь основания So = a² = 576.
б) Площадь боковой поверхности Sбок = (1/2)РА ≈ 692,2658.
Площадь полной поверхности S = So + Sбок ≈ 1268,266.
Объём V = (1/3)SoH =1536
Уг.бок.грани α = 0,588003 радиан = 33,69007°.
Угол бок.реб β = 0,440511 радиан = 25,2394°.
Выс.к бок.реб hб = 18,44895.
Уг.межбок.гр γ = 2,335479 радиан = 133,8131°.