Пусть M и N, это середины оснований BC и AD равнобедренной трапеции ABCD с перпендикулярными диагоналями AC и BD, K и L — середины боковых сторон AB и CD. Тогда KM || AC || LN, ML || BD || KN, поэтому четырехугольник KMLN — прямоугольник. Значит, KL = MN, но KL — средняя линия трапеции, а MN — высота. Средняя линия трапеции параллельна основаниям трапеции и равна их полусумме. Доказательство Пусть ABCD – данная трапеция. Проведем через вершину B и середину N боковой стороны CD прямую, пересекающую прямую AD в точке F . Треугольники BCN и FDN равны по теореме 4.2, так как CN = ND, BCN = NDF как внутренние накрест лежащие при параллельных прямых ( BC ) и ( AD ) и секущей ( CD ). CNB = DNF как вертикальные. Из равенства треугольников следует равенство сторон: BN = NF, BC = DF . Средняя линия трапеции MN является средней линией треугольника ABF и по теореме 4.12 ( MN ) || ( AD ) || ( BC ) и Теорема доказана.
Отметим, что наименьший угол прямоугольной трапеции, это единственный острый угол. (на нашем рисунке это <D). SinD=EP/HD => EP=DH*SinD. SinD=GP/HC => GP=HC*SinD. PH=√(GP*PE), как высота из прямого угла (<GHE=90°, так как опирается на диаметр GE). Тогда PH=SinD√(HD*CH). Но √(HD*CH)=OH - высота из прямого угла в прямоугольном треугольнике СOD c <COD=90° (свойство трапеции: "В трапеции её боковая сторона видна из центра вписанной окружности под углом 90°"). А так как ОН=АВ/2=R, то РН=(АВ/2)*SinD. Площадь четырехугольника EFGH равна сумме площадей треугольников EFG и EHG. Sefg=(1/2)*EG*OF = (1/2)*AB*(1/2)AB=AB²/4. Sehg=(1/2)*EG*PH = (1/2)*AB*(AB/2)*SinD=AB²*SinD/4. Тогда площадь четырехугольника EFGH равна (AB²/4)*(1+SinD). Площадь трапеции равна (1/2)*(BC+AD)*AB. Но поскольку в трапецию вписана окружность, то ВС+АD=АВ+СD (свойство: "В трапецию можно вписать окружность, если сумма длин оснований трапеции равна сумме длин её боковых сторон"). В треугольнике CDK: CK=CD*SinD, но СК=АВ, значит CD=AB/SinD. Тогда Sabcd=(1/2)*(AB+AB/SinD)*AB =AB²*(1+1/sinD)/2. По условию Sabcd=4*Sefgh. или (АВ²*(1+1/sinD)/2=4*(AB²/4)*(1+SinD). Отсюда 1/SinD==2 и SinD=1/2. ответ: острый угол D трапеции равен 30°.
Пусть M и N, это середины оснований BC и AD равнобедренной трапеции ABCD с перпендикулярными диагоналями AC и BD, K и L — середины боковых сторон AB и CD. Тогда
KM || AC || LN, ML || BD || KN,
поэтому четырехугольник KMLN — прямоугольник. Значит, KL = MN, но KL — средняя линия трапеции, а MN — высота.
Средняя линия трапеции параллельна основаниям трапеции и равна их полусумме.
Доказательство
Пусть ABCD – данная трапеция. Проведем через вершину B и середину N боковой стороны CD прямую, пересекающую прямую AD в точке F .
Треугольники BCN и FDN равны по теореме 4.2, так как CN = ND, BCN = NDF как внутренние накрест лежащие при параллельных прямых ( BC ) и ( AD ) и секущей ( CD ). CNB = DNF как вертикальные. Из равенства треугольников следует равенство сторон: BN = NF, BC = DF . Средняя линия трапеции MN является средней линией треугольника ABF и по теореме 4.12 ( MN ) || ( AD ) || ( BC ) и Теорема доказана.
SinD=EP/HD => EP=DH*SinD.
SinD=GP/HC => GP=HC*SinD.
PH=√(GP*PE), как высота из прямого угла (<GHE=90°, так как опирается на диаметр GE). Тогда PH=SinD√(HD*CH).
Но √(HD*CH)=OH - высота из прямого угла в прямоугольном треугольнике СOD c <COD=90° (свойство трапеции: "В трапеции её боковая сторона видна из центра вписанной окружности под углом 90°"). А так как ОН=АВ/2=R, то РН=(АВ/2)*SinD.
Площадь четырехугольника EFGH равна сумме площадей треугольников EFG и EHG.
Sefg=(1/2)*EG*OF = (1/2)*AB*(1/2)AB=AB²/4.
Sehg=(1/2)*EG*PH = (1/2)*AB*(AB/2)*SinD=AB²*SinD/4.
Тогда площадь четырехугольника EFGH равна (AB²/4)*(1+SinD).
Площадь трапеции равна (1/2)*(BC+AD)*AB. Но поскольку в трапецию вписана окружность, то ВС+АD=АВ+СD (свойство: "В трапецию можно вписать окружность, если сумма длин оснований трапеции равна сумме длин её боковых сторон").
В треугольнике CDK: CK=CD*SinD, но СК=АВ, значит CD=AB/SinD.
Тогда Sabcd=(1/2)*(AB+AB/SinD)*AB =AB²*(1+1/sinD)/2.
По условию Sabcd=4*Sefgh. или (АВ²*(1+1/sinD)/2=4*(AB²/4)*(1+SinD).
Отсюда 1/SinD==2 и SinD=1/2.
ответ: острый угол D трапеции равен 30°.