Если прямая (DC), параллельна какой-нибудь прямой (AB), расположенной в плоскости (α), то она параллельна самой плоскости. Если плоскость проходит через прямую (DC), параллельную другой плоскости (α), и пересекает эту плоскость, то линия пересечения (EF) параллельна первой прямой (DC). Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α. Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору АЕ=√(AD²-DE²)=√(36²-18²)=18√3. Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°. Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²
Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α.
Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору
АЕ=√(AD²-DE²)=√(36²-18²)=18√3.
Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°.
Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²
По условию МС=2DМ⇒
DC=DM+2 DM=3 ДМ
Так как АВ=3 CD, то АВ=3•3DM=9DM
Пусть КН - высота трапеции АВСD и равна h.
Тогда площадь трапеции равна 0,5•(CD+AB)•h=6 DM•h
∆ MNC~∆ ANB - по равенству всех углов ( углы при N равны как вертикальные, а при основаниях - как накрестлежащие при параллельных прямых и секущих)
МС:АВ=2DM:9DM=2/9
Отношение сходственных элементов подобных треугольников одинаково.⇒
КN:NH=2:9
h=KN+NH=2+9=11 (частей)
KN=2h/11
Тогда S ∆ MNC=0,5•MC•2h/11=2DM•h/11
Отсюда S ∆ MNC:S ABCD=(2DM•h/11):6 DM•h=1/33