Если квадрат и ромб имеют одинаковые периметры, тто они имеют и одинаковые стороны. Вычисление площади параллелограмма в случае ромба. В данном случае стороны равны, значит формула упрощается до . Заметим, что Это угол между сторонами ромба. Здесь не имеет значения острый или тупой, так как в обоих случаях будет положительный ответ. Площадь квадрата же всегда равна . Заметим, что синус всегда меняется в данном случае от 0 до 1. То есть только в случае синуса равного 1 (а это квадрат) площадь ромба равна площади квадрата, в остальных случаях площадь ромба всегда меньше площади квадрата.
Поскольку задача "продвинутая", я изложу решение в стиле "для продвинутых". Если описать окружность вокруг треугольника ABC, и продлить AD до пересечения с этой окружностью в точке H1, то DH = DH1; доказать это очень просто, если заметить, что ∠H1BD = ∠H1AC; (оба вписанных угла опираются на дугу H1C) а ∠H1AC = ∠HBD = 90° - ∠C; то есть ∠H1BD = ∠HBD; дальше очевидно. Для хорд BC и AH1 можно записать BD*CD = AD*DH1 = AD*(AD - AH); Если теперь достроить заданную в задаче полуокружность до полной, то BC будет хордой и в ней, и можно записать аналогично BD*CD = MD^2; (ну, диаметр делит перпендикулярную ему хорду пополам) Получилось AD*(AD - AH) = MD^2; или AH = AD*(1 - (MD/AD)^2); число найдите самостоятельно.
Техническая простота решения не должна вводить в заблуждение. На самом деле полученный ответ имеет очень нетривиальную интерпретацию. Дело в том, что AH - диаметр окружности, описанной вокруг треугольника AB1C1 (где B1 и С1 - основания высот BB1 и CC1). Получается, что этот диаметр не зависит от положения точки D на BC, и от величины BC, а только от AD и MD. Слово "только" не совсем точное, поскольку величина BC не является независимой. НО результат необычный.
Если описать окружность вокруг треугольника ABC, и продлить AD до пересечения с этой окружностью в точке H1, то
DH = DH1; доказать это очень просто, если заметить, что
∠H1BD = ∠H1AC; (оба вписанных угла опираются на дугу H1C) а
∠H1AC = ∠HBD = 90° - ∠C; то есть
∠H1BD = ∠HBD; дальше очевидно.
Для хорд BC и AH1 можно записать BD*CD = AD*DH1 = AD*(AD - AH);
Если теперь достроить заданную в задаче полуокружность до полной, то BC будет хордой и в ней, и можно записать аналогично
BD*CD = MD^2; (ну, диаметр делит перпендикулярную ему хорду пополам)
Получилось
AD*(AD - AH) = MD^2; или AH = AD*(1 - (MD/AD)^2); число найдите самостоятельно.
Техническая простота решения не должна вводить в заблуждение. На самом деле полученный ответ имеет очень нетривиальную интерпретацию. Дело в том, что AH - диаметр окружности, описанной вокруг треугольника AB1C1 (где B1 и С1 - основания высот BB1 и CC1). Получается, что этот диаметр не зависит от положения точки D на BC, и от величины BC, а только от AD и MD. Слово "только" не совсем точное, поскольку величина BC не является независимой. НО результат необычный.