Розділ 4 (2) + Поділ даного відрізка навпіл Задача 4. Поділіть даний відрізок навпіл. - даний відрізок, який Розв'язання. Нехай AB треба поділити навпіл, тобто побудувати його середину. 1) з точки А радіусом циркуля, (1) більшим за половину відрізка АВ, М. опишемо дугу (1) (мал. 427). 2) З точки В таким самим радіу- сом циркуля опишемо дугу (2) до перетину з дугою (1) у точках Mi N. 3) Через точки Mi N проведемо пряму MN. Пряма MN перетинає від- Р B різок АВ в точці Р. Р - шукана точка. до ведення. ДАMN = A BMN (за трьома сторонами). Тому ZAMP = Z BMP, a MP бісектриса рівнобедреного трикутника AMB з N основою AB, тому вона є також меді- (1) аною. Отже, Р. середина АВ. А Зауважимо, що пряма MN Мал. 427 серединним перпендикуляром до відрізка АВ. A Є
Начерти отрезок, его концы, допустим МК - задают тебе вершины двух известных углов, строить их надо с циркуля .Построй произвольный треугольник по заданным двум углам (третий угол, допустим Р- получится сам собой там, где пересекутся лучи двух заданных углов) . Этот треугольник подобен тому, который тебе нужен ( по 2 признаку подобия) Из третьего (получившегося угла Р) опусти с угольника высоту РН на первоначальный отрезок МК (т. е ты строишь подобную высоту) Твой треугольник подобен искомому. Теперь продли\укороти высоту РН до заданного размера-получится Рн, а через конец н проведи отрезок, параллельный МК, получится мк новой длины. Соедини точки Рмк. -готово.
В основе задания лежат свойства подобных треугольников. 1. Берем произвольный отрезок АВ и откладываем от него два данных угла . Соединяем лучи, исходящие из вершин А и В, точку пересечения обозначаем С,получается треугольник АВС , у которого два угла равны данным. 2 .Проводим вершину из угла С. Обозначим ее СЕ. 3.Далее на прямой СЕ отложим от точки Е отрезок, равный заданной высоте. Конец отрезка обозначим М. 4. Из точки М проведем прямые параллельно сторонам АС и ВС. Точки пересечения этих прямых с прямой АВ обозначим Р и Т. МРТ - искомый треугольник.
Этот треугольник подобен тому, который тебе нужен ( по 2 признаку подобия)
Из третьего (получившегося угла Р) опусти с угольника высоту РН на первоначальный отрезок МК (т. е ты строишь подобную высоту)
Твой треугольник подобен искомому.
Теперь продли\укороти высоту РН до заданного размера-получится Рн, а через конец н проведи отрезок, параллельный МК, получится мк новой длины.
Соедини точки Рмк. -готово.
1. Берем произвольный отрезок АВ и откладываем от него два данных угла .
Соединяем лучи, исходящие из вершин А и В, точку пересечения обозначаем С,получается треугольник АВС , у которого два угла равны данным.
2 .Проводим вершину из угла С. Обозначим ее СЕ.
3.Далее на прямой СЕ отложим от точки Е отрезок, равный заданной высоте. Конец отрезка обозначим М.
4. Из точки М проведем прямые параллельно сторонам АС и ВС.
Точки пересечения этих прямых с прямой АВ обозначим Р и Т.
МРТ - искомый треугольник.