Розрізання клітчастих квадратів. 1.Чи можна клітчастий квадрат розміром 5х5 клітинок розрізати на сім різних прямокутників? Розрізи дозволяється робити лише по лініях клітчастої сітки(по сторонах клітинок). Якщо не можна, то доведіть, чому. Якщо можна, то покажіть як це зробити.
По свойствам углов параллелограма угол ВАД= углу ВСД и равен 30. Сумма углов параллелограмма, прилежащих к одной стороне, равна 180º, значит ВСД+СДА=180, СДА=180-30=150. Теперь находим угол ВДА=150-75(угол ВДС=75, из дано), значит угол ВДА=75 И угол АВД тоже равен 75, так как 180-30-75=75. Значит треугольник АВД и треугольник ВСД равнобедренный с боковыми сторонами АВ и АД, ВСи СД. Сумма длин сторон АВ и АД равна половине периметра, а он равен 40 см., также мы уже знаем, что эти стороны равны, значит АВ=АД=40/2/2=10 см ответ: все стороны параллелограмма по 10 см, а углы 30,150,30,150
Объем пирамиды находят по формуле V=Sh:3 Площадь S основания найдем по формуле площади равнобедренного треугольника через его стороны 2,√3,2. S=0,25b√(4a²-b²), где а - боковая сторона, b- основание треугольника. S=0,25√3√(16-3)=0,25*√3√13 см² (Можно и по классической формуле =ah:2, но это будет немного дольше - надо находить высоту треугольника) Высоту НО пирамиды найдем из треугольника, образованного ее ребром НВ- гипотенуза, и катетами - расстояние ОВ от основания высоты до вершин треугольника и высота НО, с углом НВО=60°. Расстояние от основания высоты до вершин треугольника - это радиус описанной вокруг треугольника окружности, так как все ребра наклонены к основанию пирамиды под углом 60°, и на этом основании их проекции равны этому радиусу. Радиус описанной окружности найдем по формуле для радиуса окружности, описанной вокруг равнобедренного треугольника. R=a²:√(4a²-b²)R=4:√(16-3)=4:√13 см НО=R:Ctg(60°) = (4:√13):1/√3=(4√3):√13 см
Сумма углов параллелограмма, прилежащих к одной стороне, равна 180º, значит ВСД+СДА=180, СДА=180-30=150. Теперь находим угол ВДА=150-75(угол ВДС=75, из дано), значит угол ВДА=75
И угол АВД тоже равен 75, так как 180-30-75=75. Значит треугольник АВД и треугольник ВСД равнобедренный с боковыми сторонами АВ и АД, ВСи СД. Сумма длин сторон АВ и АД равна половине периметра, а он равен 40 см., также мы уже знаем, что эти стороны равны, значит АВ=АД=40/2/2=10 см
ответ: все стороны параллелограмма по 10 см, а углы 30,150,30,150
V=Sh:3
Площадь S основания найдем по формуле площади равнобедренного треугольника через его стороны 2,√3,2.
S=0,25b√(4a²-b²), где а - боковая сторона, b- основание треугольника.
S=0,25√3√(16-3)=0,25*√3√13 см²
(Можно и по классической формуле =ah:2, но это будет немного дольше - надо находить высоту треугольника)
Высоту НО пирамиды найдем из треугольника, образованного ее ребром
НВ- гипотенуза, и катетами - расстояние ОВ от основания высоты до вершин треугольника и высота НО, с углом НВО=60°.
Расстояние от основания высоты до вершин треугольника - это радиус описанной вокруг треугольника окружности, так как все ребра наклонены к основанию пирамиды под углом 60°, и на этом основании их проекции равны этому радиусу.
Радиус описанной окружности найдем по формуле для радиуса окружности, описанной вокруг равнобедренного треугольника.
R=a²:√(4a²-b²)R=4:√(16-3)=4:√13 см
НО=R:Ctg(60°) = (4:√13):1/√3=(4√3):√13 см
V=Sh:3
V=(0,25*√3√13)(4√3):√13):3=1 см³