№1
Дано:
Окружность с центром в точке O
Хорды - AB, BC
Угол AOB=Угол BOC
Доказать:
Угол OCB=Угол OAB
1)Т.к Угол AOB=Угол BOC, то и дуги которые они отсекают равны:
Дуга AB = Дуга BC.
2)Хорды соединяющие равны дуги - равны:
AB = BC
3)Т.к OC, OB и OA - радиусы, то они равны:
OA=OB=OC
Значит:
Треугольник OBC = Треугольник OBA (3 условие равности треугольников (по трём равным сторонам)):
OA=OC; AB=BC; OB - общая сторона.
4)Т.к треугольники равны, то все стороны и углы в них соответственно равны. Из этого можно взять равенство углов OCB и OAB.
Ч.Т.Д
№2
Окружность с центром в точке О
Хорды - AB,BC
AB=BC
Угол ABO=Угол CBO
1)Так как точки A,B и C лежат на окружности, то отрезки AO, BO и CO равны, так как это радиусы окружности.
AO=BO=CO
Треугольник ABO=Треугольник CBO(по трём равным сторонам):
AO=OC; OB - общая. AB=BC (Из условия)
2)Т.к треугольники равны, то все стороны и углы в них соответственно равны. Из этого можно взять равенство углов ABO и CBO.
Объяснение:
1.
Дано: КМРТ - трапеция, МР=4; КТ=25; ∠М=135°; КМ=7√2. S(КМРТ) - ?
Проведем высоту МН, ΔКМН - прямоугольный, ∠КМН=135-90=45°, значит ∠К=45° и КН=МН.
По теореме Пифагора КМ=√(КН²+МН²); пусть КН=МН=х, тогда
(7√2)²=х²+х²; 2х²=98; х²=49; х=7. МН=7.
S=(МР+КТ):2*МН=(4+25):2*7=101,5 ед²
2.
Дано КМРТ - ромб, МР=29; КР=42. S(КМРТ) - ?
Стороны ромба равны. Диагонали ромба образуют прямой угол и в точке пересечения делятся пополам.
ΔМОР - прямоугольный, МР=29; ОР=42:2=21.
По теореме Пифагора МО=√(МР²-ОР²)=√(841-441)=√400=20.
МТ=20*2=40.
S=1/2 * КР * МТ = 1/2 * 40 * 42 = 840 ед²
№1
Дано:
Окружность с центром в точке O
Хорды - AB, BC
Угол AOB=Угол BOC
Доказать:
Угол OCB=Угол OAB
1)Т.к Угол AOB=Угол BOC, то и дуги которые они отсекают равны:
Дуга AB = Дуга BC.
2)Хорды соединяющие равны дуги - равны:
AB = BC
3)Т.к OC, OB и OA - радиусы, то они равны:
OA=OB=OC
Значит:
Треугольник OBC = Треугольник OBA (3 условие равности треугольников (по трём равным сторонам)):
OA=OC; AB=BC; OB - общая сторона.
4)Т.к треугольники равны, то все стороны и углы в них соответственно равны. Из этого можно взять равенство углов OCB и OAB.
Ч.Т.Д
№2
Дано:
Окружность с центром в точке О
Хорды - AB,BC
AB=BC
Доказать:
Угол ABO=Угол CBO
1)Так как точки A,B и C лежат на окружности, то отрезки AO, BO и CO равны, так как это радиусы окружности.
AO=BO=CO
Значит:
Треугольник ABO=Треугольник CBO(по трём равным сторонам):
AO=OC; OB - общая. AB=BC (Из условия)
2)Т.к треугольники равны, то все стороны и углы в них соответственно равны. Из этого можно взять равенство углов ABO и CBO.
Ч.Т.Д
Объяснение:
1.
Дано: КМРТ - трапеция, МР=4; КТ=25; ∠М=135°; КМ=7√2. S(КМРТ) - ?
Проведем высоту МН, ΔКМН - прямоугольный, ∠КМН=135-90=45°, значит ∠К=45° и КН=МН.
По теореме Пифагора КМ=√(КН²+МН²); пусть КН=МН=х, тогда
(7√2)²=х²+х²; 2х²=98; х²=49; х=7. МН=7.
S=(МР+КТ):2*МН=(4+25):2*7=101,5 ед²
2.
Дано КМРТ - ромб, МР=29; КР=42. S(КМРТ) - ?
Стороны ромба равны. Диагонали ромба образуют прямой угол и в точке пересечения делятся пополам.
ΔМОР - прямоугольный, МР=29; ОР=42:2=21.
По теореме Пифагора МО=√(МР²-ОР²)=√(841-441)=√400=20.
МТ=20*2=40.
S=1/2 * КР * МТ = 1/2 * 40 * 42 = 840 ед²