Если прямая (DC), параллельна какой-нибудь прямой (AB), расположенной в плоскости (α), то она параллельна самой плоскости. Если плоскость проходит через прямую (DC), параллельную другой плоскости (α), и пересекает эту плоскость, то линия пересечения (EF) параллельна первой прямой (DC). Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α. Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору АЕ=√(AD²-DE²)=√(36²-18²)=18√3. Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°. Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²
Таким же образом, используя формулу для площади треугольника, можно доказать и теорему о биссектрисе внутреннего угла треугольника.
Теорема (о биссектрисе внутреннего угла треугольника).
Если AA1 ¾ биссектриса угла A треугольника ABC, то
BA1 : A1 C = BA : AC.
Доказательство. Пусть угол при вершине A в треугольнике ABC равен 2a. Рассмотрим треугольники BAA1 и CAA1 (см. рис.). Их площади относятся как отрезки BA1 и A1C, поскольку высота к этим сторонам в рассматриваемых треугольниках общая.
2
Свойства Углы, противолежащие равным сторонам равнобедренного треугольника, равны между собой. Также равны биссектрисы, медианы и высоты, проведённые из этих углов. Биссектриса, медиана и высота, проведенные к основанию совпадают между собой. Центры вписанной и описанной окружностей лежат на этой линии. Углы, противолежащие равным сторонам, всегда острые (следует из их равенства). Признаки Два угла треугольника равны. Высота совпадает с медианой. Высота совпадает с биссектрисой. Биссектриса совпадает с медианой.
Пусть a — длина двух равных сторон равнобедренного треугольника, b — длина третьей стороны, — соответствующие углы, R — радиус описанной окружности, r — радиус вписанной окружности.
Расстояние от прямой DC до плоскости α - это перпендикуляр из любой точки этой прямой на плоскость α.
Итак, в прямоугольном треугольнике АЕD катет АЕ равен по Пифагору
АЕ=√(AD²-DE²)=√(36²-18²)=18√3.
Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. То есть угол между плоскостью α и плоскостью квадрата - это угол EAD, cинус которого равен отношению противолежащего катета к гипотенузе: Sinβ=ED/AD=18/36=1/2. Значит угол между плоскостями равен 30°.
Площадь проекции квадрата на плоскость α - это площадь прямоугольника AEFB, равная S=AB*AE=36*18√3=648√3см²
1
Таким же образом, используя формулу для площади треугольника, можно доказать и теорему о биссектрисе внутреннего угла треугольника.
Теорема (о биссектрисе внутреннего угла треугольника).Если AA1 ¾ биссектриса угла A треугольника ABC, то
BA1 : A1 C = BA : AC.
Доказательство. Пусть угол при вершине A в треугольнике ABC равен 2a. Рассмотрим треугольники BAA1 и CAA1 (см. рис.). Их площади относятся как отрезки BA1 и A1C, поскольку высота к этим сторонам в рассматриваемых треугольниках общая.
2
Свойства Углы, противолежащие равным сторонам равнобедренного треугольника, равны между собой. Также равны биссектрисы, медианы и высоты, проведённые из этих углов. Биссектриса, медиана и высота, проведенные к основанию совпадают между собой. Центры вписанной и описанной окружностей лежат на этой линии. Углы, противолежащие равным сторонам, всегда острые (следует из их равенства). Признаки Два угла треугольника равны. Высота совпадает с медианой. Высота совпадает с биссектрисой. Биссектриса совпадает с медианой.Пусть a — длина двух равных сторон равнобедренного треугольника, b — длина третьей стороны, — соответствующие углы, R — радиус описанной окружности, r — радиус вписанной окружности.