Пусть дана пирамида РАВС. РВ - её высота, АС - гипотенуза основания.
Гипотенуза основания равна 12√2 см.
Высота из точки В на АС в прямоугольном равнобедренном треугольнике является медианой. Медиана в прямоугольном треугольнике, проведенная к гипотенузе, равна половине гипотенузы. То есть она равна 6√2 см.
Пусть общая хорда AB , O₁ и O₂ центры окружностей ;O₁A=O₂A =r ,O₁O₂ =r. --- O₁O₂ ⊥ AB. ΔO₁A O₂ (также ΔO₁BO₂) равносторонние со стороной r. AB= 2*(r√3)/2)⇒r =(AB√3)/3 .
Пусть AB и CD взаимно перпендикулярные хорды (AB ⊥ CD) , P_точка пересечения этих хорд ( P=[AB] ⋂[CD] ) b AP= DP =10 ; BP =CP =16 см.
R - ? Например , из ΔACD: AC/sin∠ADC =2R ⇒R =AC/2sin∠ADC.
Пусть дана пирамида РАВС. РВ - её высота, АС - гипотенуза основания.
Гипотенуза основания равна 12√2 см.
Высота из точки В на АС в прямоугольном равнобедренном треугольнике является медианой. Медиана в прямоугольном треугольнике, проведенная к гипотенузе, равна половине гипотенузы. То есть она равна 6√2 см.
Находим высоту боковой грани АРС:
РК = √(9² + (6√2)²) = √(81 + 72) = √153 = (3√17) см.
Находим площадь боковой поверхности.
Sбок = 2*(1/2)*9*12 + (1/2)*12√2*3√17 = (108 + 18√34) см².
Площадь основания So = (1/2)*12² = 72 см².
Площадь полной поверхности равна:
S = So + Sбок = 72 + 108 + 18√34 = (180 + 18√34) см².
---
O₁O₂ ⊥ AB. ΔO₁A O₂ (также ΔO₁BO₂) равносторонние со стороной r.
AB= 2*(r√3)/2)⇒r =(AB√3)/3 .
Пусть AB и CD взаимно перпендикулярные хорды (AB ⊥ CD) , P_точка пересечения этих хорд ( P=[AB] ⋂[CD] ) b AP= DP =10 ; BP =CP =16 см.
R - ?
Например , из ΔACD: AC/sin∠ADC =2R ⇒R =AC/2sin∠ADC.
ΔAPC =ΔBPD (по катетам ) ⇒AC =DB =√(10² +16²) =2√(5² +8²) =2√89 (см).
ΔAPD равнобедренный прямоугольный треугольник
⇒∠ADP || ∠ADC|| =∠DAP=45° .
Следовательно :
R =AC/2sin∠ADC =AC/2sin45° =(2√89)/(2*1/√2) =√178 (см).