(
ru: Концы отрезка длиной 6 см принадлежат двум взаимно перпендикулярным плоскостям. Проекция отрезка на одну из плоскостей 3√3 см, а расстояние от его конца до второй плоскости 3√2 см. Вычислить углы, образованные отрезком с этими плоскостями.
ukr: Кінці відрізка довжиною 6 см належать двом взаємно перпендикулярним площинам. Проекція відрізка на одну з площин 3√3 см, а відстань від його кінця до другої площини 3√2 см. Обчислити кути, утворені відрізком з цими площинами.
ответ: а) 150* и 30*; б) 55* и 125*
Объяснение:
В нашем случае образуется 8 углов из которых одна половина равны между собой и вторая половина также равны между собой.
Так ∠1=∠4=∠5=∠8, как накрест лежащие и равны 150*.
А ∠2=∠3=∠6=∠7.
Сумма углов 1 и 2 равен 180*, т.е. получается развернутый угол, а углы смежные. Отсюда найдем ∠2=180*-150*=30*.
б) один из углов на 70* больше другого. обозначим один из углов через х, тогда другой, смежный ему, равен х+70. В сумме они дают 180*.Составим уравнение и найдем х:
х+х+70=180*;
2х+70=180*;
2х=180-70;
2х=110;
х=55* - один из углов (меньший).
55*+70*=125* - больший угол.
Итак, одна половина углов равна 55*, а другая - 125* (смотри предыдущее задание).
Как-то так... :)) Удачи!
2) Поскольку в равнобедренном треугольнике углы при основании равны, находим угол А и С:<A = <C = (180 - 120) : 2 = 30°После построения высоты АН получаем прямоугольный треугольник АНС. Его неизвестный катет АН (наша высота) лежит против угла 30 градусов и равен половине гипотенузы:АН = АС : 2 = 12 : 2 = 6 см
Подробнее - на -