Прямые а и АD не лежат в одной плоскости, не пересекаются. Они скрещивающиеся.
Чтобы найти угол между скрещивающимися прямыми, нужно:
провести прямую, параллельную одной из двух скрещивающихся прямых так, чтобы она пересекала вторую прямую. При этом получатся пересекающиеся прямые. Угол между ними равен углу между исходными скрещивающимися.
Нам не нужно проводить прямую параллельно данной прямой а - она по условию уже параллельна стороне ВС треугольника АВС. Медиана АD равностороннего треугольника перпендикулярна ВС, следовательно, образует с прямой а угол 90°.
Прямые а и АD не лежат в одной плоскости, не пересекаются. Они скрещивающиеся.
Чтобы найти угол между скрещивающимися прямыми, нужно:
провести прямую, параллельную одной из двух скрещивающихся прямых так, чтобы она пересекала вторую прямую. При этом получатся пересекающиеся прямые. Угол между ними равен углу между исходными скрещивающимися.
Нам не нужно проводить прямую параллельно данной прямой а - она по условию уже параллельна стороне ВС треугольника АВС. Медиана АD равностороннего треугольника перпендикулярна ВС, следовательно, образует с прямой а угол 90°.
ответ: 36
Объяснение:
Медиана делит треугольник на два равновеликих, значит
Sabk = Sbkc = 1/2 Sabc = 1/2 · 80 = 40
По условию BD : CD = 1 : 3.
Пусть BD = a, тогда CD = 3a.
Биссектриса делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам, значит
AB : AC = BD : CD = 1 : 3
Пусть АВ = b, тогда АС = 3b, а АК = 1,5b (ВК медиана).
Из вершины В проведем прямую, параллельную АС. Точка Т - точка пересечения ее с лучом AD.
Получаем две пары подобных треугольников:
1) ΔBTD ~ ΔCAD по двум углам (∠Т = ∠А как накрест лежащие, углы при вершине D вертикальные),
BT : AC = BD : CD = 1 : 3, ⇒
так как АС = 3b, то ВТ = b.
2) ΔВЕТ ~ΔКЕА так же по двум углам,
ВЕ : ЕК = ВТ : АК = b : (1,5b) = 2 : 3
ВЕ = 2с, ЕК = 3с.
_____________________________________________
Sbkc = 1/2 · BC · BK · sinα = 1/2 · 4a · 5с · sinα = 10ac·sinα = 40
ac·sinα = 4
Площадь желтого треугольника:
Sbed = 1/2 · BD · BE · sinα = 1/2 · a · 2c · sinα = ac·sinα = 4
Площадь четырехугольника EDCK:
Sedck = Sbkc - Sbed = 40 - 4 = 36 кв. ед.