1. Формула диагонали прямоугольника через 2 стороны прямоугольника (по теореме Пифагора): 2. Формула диагонали прямоугольника через площадь и сторону: 3. Формула диагонали прямоугольника через периметр и сторону: 4. Формула диагонали прямоугольника через радиус окружности (описанной):d = 2R 5. Формула диагонали прямоугольника через диаметр окружности (описанной):d = Dо 6. Формула диагонали прямоугольника через синус угла, который прилегает к диагонали, и длину стороны противолежащей этому углу: 7. Формула диагонали прямоугольника через косинус угла, который прилегает к диагонали, и длину стороны, которая прилегает к этому углу: 8. Формула диагонали прямоугольника через синус острого угла между диагоналями и площадью прямоугольника: Признаки прямоугольника. Параллелограмм - это прямоугольник, если выполняются условия:- Если диагонали его имеют одинаковую длину.- Если квадрат диагонали параллелограмма равняется сумме квадратов смежных сторон.- Если углы параллелограмма имеют одинаковую величину. Стороны прямоугольника. Длинная сторона прямоугольника является длиной прямоугольника, а короткая - ширина прямоугольника. Формулы для определения длин сторон прямоугольника: 1. Формула стороны прямоугольника (длина и ширина прямоугольника) через диагональ и еще одну сторону: 2. Формула стороны прямоугольника (длина и ширина прямоугольника) через площадь и еще одну сторону: 3. Формула стороны прямоугольника (длина и ширина прямоугольника) через периметр и еще одну сторону: 4. Формула стороны прямоугольника (длина и ширина прямоугольника) через диаметр и угол α:a = d sinαb = d cosα 5. Формула стороны прямоугольника (длина и ширина прямоугольника) через диаметр и угол β: Окружность, описанная вокруг прямоугольника. Окружность, описанная вокруг прямоугольника - это круг, который проходит сквозь 4-ре вершины прямоугольника, с центром на пересечении диагоналей прямоугольника. Формулы определения радиуса окружности описанной вокруг прямоугольника: 1. Формула радиуса окружности, которая описана около прямоугольника через 2-е стороны: 2. Формула радиуса окружности, которая описана около прямоугольника через периметр квадрата и сторону: 3. Формула радиуса окружности, которая описана около прямоугольника через площадь квадрата: 4. Формула радиуса окружности, которая описана около прямоугольника через диагональ квадрата: 5. Формула радиуса окружности, которая описана около прямоугольника через диаметр окружности (описанной): 6. Формула радиуса окружности, которая описана около прямоугольника через синус угла, который прилегает к диагонали, и длину стороны противолежащей этому углу: 7. Формула радиуса окружности, которая описана около прямоугольника через косинус угла, который прилегает к диагонали, и длину стороны у этого угла: 8. Формула радиуса окружности, которая описана около прямоугольника через синус острого угла между диагоналями и площадью прямоугольника: Угол между стороной и диагональю прямоугольника. Формулы для определения угла между стороной и диагональю прямоугольника: 1. Формула определения угла между стороной и диагональю прямоугольника через диагональ и сторону: 2. Формула определения угла между стороной и диагональю прямоугольника через угол между диагоналями: Угол между диагоналями прямоугольника. Формулы для определения угла меж диагоналей прямоугольника: 1. Формула определения угла меж диагоналей прямоугольника через угол между стороной и диагональю:β = 2α 2. Формула определения угла между диагоналями прямоугольника через площадь и диагональ:
Точки Р и Q принадлежат одной плоскости DD1C1C. Проводим прямую PQ.Две параллельные плоскости (АА1В1В и DD1C1C) пересекаются третьей (плоскостью сечения) по параллельным прямым. Проведем через точку R прямую "к", параллельную прямой PQ и на пересечении прямых "к" и прямых, содержащих ребра АА1 и ВВ1, получим точки Т и S соответственно. Точки Т и Q принадлежат одной плоскости АА1D1D прямая ТQ - линия пересечения секущей плоскости и грани АА1D1D. Точки S и P принадлежат одной плоскости, содержащей грань ВВ1С1С. Провежем прямую SP и получим на ребре ВС1 точку М. Прямая МР - линия пересечения секущей плоскости и грани ВВ1С1С. Фигура PQTRM - искомое сечение.
Точки Р и Q принадлежат одной плоскости DD1C1C. Проводим прямую PQ.Две параллельные плоскости (АА1В1В и DD1C1C) пересекаются третьей (плоскостью сечения) по параллельным прямым. Проведем через точку R прямую "к", параллельную прямой PQ и на пересечении прямых "к" и прямых, содержащих ребра АА1 и ВВ1, получим точки Т и S соответственно. Точки Т и Q принадлежат одной плоскости АА1D1D прямая ТQ - линия пересечения секущей плоскости и грани АА1D1D. Точки S и P принадлежат одной плоскости, содержащей грань ВВ1С1С. Провежем прямую SP и получим на ребре ВС1 точку М. Прямая МР - линия пересечения секущей плоскости и грани ВВ1С1С. Фигура PQTRM - искомое сечение.