Угол между образующей конуса и плоскостью основания равен углу между образующей и радиусом основания, проведенного к данной образующей. Площадь боковой поверхности конуса: pi*R*l, площадь основания - pi*R^2. Поскольку площадь боковой поверхности в два раза больше площади основания, то pi*R*l = 2*pi*R^2. упрощаем уравнение: l = 2R. Из рисунка CB = 2OB. Из прямоугольного треугольника COB: угол, который лежит против катета, который в два раза меньше гипотенузы, равен 30 градусов. OB - катет, CB - гипотенуза, следовательно, угол BOC = 30 градусов. Искомый угол CBO = 90 - 30 = 60 градусов.
Пусть высота проведенная из прямого угла А (треугольника АBC) будет обозначена АК. Тогда ВК является проекцией стороны АВ на гипотенузу ВС, а КС -проекцией АС на гипотенузу. Согласно формулам : АВ=√ВК*ВС и АС=√КС*ВС. Мы знаем соотношение катетов АВ и АС = 6:5, значит надо составить пропорцию АВ/АС=√ВК*ВС/√КС*ВС, ВС сокращается и получаем , что ВК/КС=(АВ/АС)^2=36/25 Зная ,что ВК больше КС на 11см, получаем ВК=КС+11, подставим в предыдущую формулу, получим (КС+11)/КС=36/25 25(КС+11)=36КС 25КС+275=36КС 11КС=275 КС=25см ВК=25+11=36см, значит гипотенуза ВС=ВК+КС=25+36=61см Отве: 61см
Мы знаем соотношение катетов АВ и АС = 6:5, значит надо составить пропорцию АВ/АС=√ВК*ВС/√КС*ВС, ВС сокращается и получаем , что ВК/КС=(АВ/АС)^2=36/25
Зная ,что ВК больше КС на 11см, получаем ВК=КС+11, подставим в предыдущую формулу, получим
(КС+11)/КС=36/25
25(КС+11)=36КС
25КС+275=36КС
11КС=275
КС=25см
ВК=25+11=36см, значит гипотенуза ВС=ВК+КС=25+36=61см
Отве: 61см