<BCK =<MCK =α -? Точка K находится вне треугольника (на продолжении биссектрисы AL и MK _среднего перпендикуляра стороны BC). Из ΔСMK : tqα = MK/MC =MK/(AB/2) =2MK/AB.
Октаэдр в задаче можно представить себе следующим образом. Пусть есть трехмерная система координат. На каждой из осей надо отложить от начала координат отрезки равной длины в обе стороны. Получится 6 точек, которые и будут вершинами октаэдра. К примеру, если вершины (0,0,a) (0,0,-a) (0,a,0) (0,-a,0) (a,0,0) (-a,0,0) то ребро равно c = a√2. Если очень хочется, можно найти, чему равно а при заданной длине ребра c = √6(√2 + 1). a = √3(√2 + 1); Но это не очень существенно. Легко видеть, что в каждой из плоскостей, содержащих две оси координат, лежат одинаковые квадраты со стороной c. Вот тут самая важная часть решения. "С точки зрения вписанного куба" сечения, проходящие через оси XOZ и YOZ - это прямоугольники сo сторонами b и b√2 где b - ребро куба. Эти сечения проходят через ребро куба, параллельное оси Z и диагонали горизонтальных граней. В сечении плоскостью XOY лежит квадрат со стороной b, НЕ касающийся квадрата со стороной c (октаэдра). То есть получается такая задача для нахождения b (при заданном c) "В квадрат со стороной c = √6(√2 + 1) вписан прямоугольник со сторонами b и b√2, стороны которого параллельны диагоналям квадрата. Надо найти b^2". Очевидно, что c = (b/2)*√2 + (b√2/2)*√2 = (b√2/2)(√2 + 1); Отсюда b = 2√3; b^2 = 12;
<BCK =<MCK =α -?
Точка K находится вне треугольника (на продолжении биссектрисы AL и MK _среднего перпендикуляра стороны BC).
Из ΔСMK : tqα = MK/MC =MK/(AB/2) =2MK/AB.
Из ΔABL: BL =AB*tq<LAB =AB*tq20° ;
ML =BM - BL = BC/2 - <BL = (AB*tq40°)/2 - AB*tq20°= (AB/2)*tq40°-AB*tq20° =
=(AB/2)*2tq20°/(1-tq²20°) - AB*tq20° =
=(AB/2)*tq20°(2/(1-tq²20°) -2) =(AB/2)*2tq³20°/(1 -tq²20°)=(AB/2)*tq²20°*tq40°.
MK | | BA ; <LKM = <LAB =20° ;
Из ΔKML: MK =ML*ctq<LKM⇔MK=AB/2)*tq²20°*tq40°*ctq20° =(AB/2)*tq20*tq40°;
окончательноьно :
tqα = 2MK/AB = 2*(AB/2)*tq20*tq40°/ AB =tq20°*tq40°.
ответ : α = arctq (tq20°*tq40°) .
(пример некрасивого решения)
Пусть есть трехмерная система координат. На каждой из осей надо отложить от начала координат отрезки равной длины в обе стороны. Получится 6 точек, которые и будут вершинами октаэдра.
К примеру, если вершины (0,0,a) (0,0,-a) (0,a,0) (0,-a,0) (a,0,0) (-a,0,0)
то ребро равно c = a√2. Если очень хочется, можно найти, чему равно а при заданной длине ребра c = √6(√2 + 1). a = √3(√2 + 1); Но это не очень существенно.
Легко видеть, что в каждой из плоскостей, содержащих две оси координат, лежат одинаковые квадраты со стороной c.
Вот тут самая важная часть решения.
"С точки зрения вписанного куба" сечения, проходящие через оси XOZ и YOZ - это прямоугольники сo сторонами b и b√2 где b - ребро куба.
Эти сечения проходят через ребро куба, параллельное оси Z и диагонали горизонтальных граней.
В сечении плоскостью XOY лежит квадрат со стороной b, НЕ касающийся квадрата со стороной c (октаэдра).
То есть получается такая задача для нахождения b (при заданном c)
"В квадрат со стороной c = √6(√2 + 1) вписан прямоугольник со сторонами b и b√2, стороны которого параллельны диагоналям квадрата. Надо найти b^2".
Очевидно, что c = (b/2)*√2 + (b√2/2)*√2 = (b√2/2)(√2 + 1);
Отсюда b = 2√3; b^2 = 12;