Строим ромб АВСД, где есть диагонали АС и ВД. Допустим, они пересекаются в точке О. Рассмотрим треугольник АОД. Он прямоугольный, так как угол АОД=90 градусов (Диагонали ромба пересекаются под прямым углом, это по свойству ромба). Также диагонали ромба делятся точкой пересечения пополам, это тоже свойство ромба. Получаем, что АО=1/2АС=12. Тогда ДО=1/2ВД=9. Применяем теорему Пифагора, где квадрат гипотенузы равен сумм квадратов катетов, т.е. получаем, что АД^2=AO^2+ДО^2. Катеты известны, ищем гипотенузу, которая и будет являться стороной ромба. АД^2=12^2+9^2 АД=корень из 12^2+9^2= корень из 144+81=корень из 225 = 15см. Сторона ромба равняется 15 см.
Применяем теорему Пифагора, где квадрат гипотенузы равен сумм квадратов катетов, т.е. получаем, что АД^2=AO^2+ДО^2. Катеты известны, ищем гипотенузу, которая и будет являться стороной ромба.
АД^2=12^2+9^2
АД=корень из 12^2+9^2= корень из 144+81=корень из 225 = 15см.
Сторона ромба равняется 15 см.
E, F, G - точки касания на сторонах AC, AB, BC
Отрезки касательных из одной точки равны.
AE=AF, BF=BG, CG=CE
p =AE+BG+CG =AE+BC (полупериметр)
Расстояние от точки до прямой измеряется длиной перпендикуляра.
Радиус в точку касания перпендикулярен касательной.
OE=OG =r =7
AE=√(AO^2 -OE^2) =24 (теорема Пифагора)
S(ABC) =pr =(24+BC)*7
Высота GH - расстояние между параллельными BC и AD - сумма расстояний от точки O до этих прямых.
GH =7+19 =26
S(ABCD) =BC*GH =BC*26
△ABC=△ABD (по трем сторонам) => S(ABC) =S(ABCD)/2
(24+BC)*7 = BC*26/2 => BC=28
S(ABCD) =28*26 =728