А) В случае указания только двух расстояний - да, три точки в любом случае могут располагатсья на одной прямой, как при расположении точки А между В и С, так и при расположении точки А в одной стороне прямой от точке В и С б) Когда даны три расстояния - всё становится интереснее При расположении точек на одной прямой сумма двух меньших расстояний должна быть равной большему 6,8 + 5,5 = 12,3 - это верное равенство и оно соответствует условиям задачи ответ - точки АВС лежат на одной прямой. Не просто "могут лежать", а жёстче, лежат.
1)
Δ АСВ – прямоугольный.
По теореме Пифагора
АВ2=AC2+BC2=225+400=625
AB=25
Проводим высоту СН прямоугольного Δ АСВ
СH– проекция MH
CН⊥АВ, по теореме о трех перпендикуярах MH ⊥АВ
Расстояние от вершины M до АВ и есть МН,
Из формула площади прямоугольного треугольника АСВ
S=1/2·АС·ВС
и
S=(1/2)·АВ·СН
СН=АС·ВС/АВ=20·15/25=12
Из прямоугольного треугольника МСН прямоугольный
МН=СН/сos 60 °=12/0,5=24
О т в е т. Расстояние от вершины пирамиды до прямой АВ равно 24 см.
2)
Из прямоугольного треугольника МСН прямоугольный
МC2=MH2–CH2=242–122=432
MC=12√3
S=S Δ MBC+S Δ MAB+S Δ MAD+S Δ MDC+S(ABCD)
S Δ MBC=(1/2)BC·CD=(1/2)·20·12√3=
S Δ MAB=(1/2)AB·CH=(1/2)·25·12=150
CK⊥АD
CK=AB·CH/AD=25·12/20=15
S Δ MAD= (1/2)AD·CK=(1/2)20·15=150
S Δ MDC=(1/2)CD·MC=(1/2)·25·12√3=
S(ABCD)=2S Δ ABC=2·(1/2)BC·AC=20·15=300
б)
Когда даны три расстояния - всё становится интереснее
При расположении точек на одной прямой сумма двух меньших расстояний должна быть равной большему
6,8 + 5,5 = 12,3 - это верное равенство и оно соответствует условиям задачи
ответ - точки АВС лежат на одной прямой.
Не просто "могут лежать", а жёстче, лежат.