с геометрией . Отрезок AB пересекает плоскость альфа в точке M. Через A и B проведены параллельные прямые, пересекающие альфа в точках A1 и B1. AA1 = 9: OA=15; AB=21. Найти BB1
Пусть ABC' — произвольный треугольник. Проведем через вершину B прямую, параллельную прямой AC. Отметим на ней точку D так, чтобы точки A и D лежали по разные стороны прямой BC.Углы DBC и ACB равны как внутренние накрест лежащие, образованные секущей BC с параллельными прямыми AC и BD. Поэтому сумма углов треугольника при вершинах B и С равна углу ABD.Сумма всех трех углов треугольника равна сумме углов ABD и BAC. Так как эти углы внутренние односторонние для параллельных AC и BD при секущей AB, то их сумма равна 180°. Теорема доказана.
определим величину ребра вписанного правильного шестиугольника.
а = р / 6 = 60 / 6 = 10 см.
так как вписанный шестигранник правильный, воспользуемся формулой нахождения радиуса окружности, в которую вписан правильный многогранник.
r = a / (2 * sin(3600 / 2 * где
а – длина ребра многогранника;
n – количество граней многогранника.
r = 10 / (2 * sin(3600 / 2 * 6)) = 10 / (2 * sin300) = 10 см.
воспользуемся этой же формулой для вписанного квадрата.
10 = а / (2 * sin(3600 / 2 * 4)) = a / (2 * sin450).
а = 10 * 2 * sin450 = 20 * (√2/2) = 10 * √2 см.
ответ: сторона вписанного квадрата равна 10 * √2 см.