с геометрией. в Задании НЕОБХОДИМ чертёж Основание прямой призмы – прямоугольный треугольник с гипотенузой 20 и катетом 16. Диагональ боковой грани, содержащей второй катет треугольника, равна 13. Найдите высоту призмы.
Построй сначала диагональ 8см, Через ее середину, перпендикулярно ей, другую диагональ, так чтобы в точке пересечения диагонали делились пополам. Соедини точки и получишь ромб. По свойству ромба его диагонали взаимноперпендикулярны и делятся пополам в точке пересечения. площадь ромба находим по формуле полупроизведения диагоналей, т.е.
с периметром сложнее: Ромб как видим разделен на четыре треугольника, берем любой из них, по теореме пифагора находим сторону ромба, т.к. треугольники все прямоугольные. Зная сторону ромба умнож ее на 4 и получишь периметр. ву а ле
А) Функции будут параллельны по отношении друг к другу. Причем, вторая функция (P.S "игрек" я не буду писать, поди, не запутаетесь) 2x-4 ниже графика 2x б) В этом случае графики имеют одну общую точку, поскольку эти две функции задаются прямыми, и их коэффициенты пропорциональности НЕ равны. Давайте проверим, какую общую точку они будут иметь:
Подставив x в любое из функций, получим, что y=7. Т.е общая точка - это M(4;7)
в) Эти функции равны. Они имеют бесконечно много общих точек.
г) Подробно расписывать решение не буду. Только скажу, что найдем общую точку:
Общая точка - это точка M(2;2). Прямые имеют только одну общую точку, значит, графики пересекаются только в ОДНОЙ точке.
площадь ромба находим по формуле полупроизведения диагоналей, т.е.
с периметром сложнее: Ромб как видим разделен на четыре треугольника, берем любой из них, по теореме пифагора находим сторону ромба, т.к. треугольники все прямоугольные. Зная сторону ромба умнож ее на 4 и получишь периметр.
ву а ле
б) В этом случае графики имеют одну общую точку, поскольку эти две функции задаются прямыми, и их коэффициенты пропорциональности НЕ равны. Давайте проверим, какую общую точку они будут иметь:
Подставив x в любое из функций, получим, что y=7.
Т.е общая точка - это M(4;7)
в) Эти функции равны. Они имеют бесконечно много общих точек.
г) Подробно расписывать решение не буду. Только скажу, что найдем общую точку:
Общая точка - это точка M(2;2).
Прямые имеют только одну общую точку, значит, графики пересекаются только в ОДНОЙ точке.