АВСД - трапеция, АД-ВС=14 см, Р=86 см, ∠АВД=∠СВД, АВ=СД. В трапеции биссектриса отсекает от противоположного основания отрезок, равный боковой стороне, прилежащей к биссектрисе (свойство трапеции, да и параллелограмма тоже). В нашем случае биссектриса - это диагональ, значит АВ=АД. АВ=АД=СД, ВС=АД-14 ⇒ Р=4·АД-14, 86=4АД-14, АД=25 см. ВМ - высота на сторону АД. В равнобедренной трапеции АМ=(АД-ВС)/2=14/2=7 см. В тр-ке АВМ ВМ=√(АВ²-АМ²)=√(25²-7²)=24 см. ВС=АД-14=25-14=11 см. Площадь трапеции: S=(АВ+ВС)·ВМ/2=(25+11)·24/2=432 см² - это ответ.
В трапеции биссектриса отсекает от противоположного основания отрезок, равный боковой стороне, прилежащей к биссектрисе (свойство трапеции, да и параллелограмма тоже). В нашем случае биссектриса - это диагональ, значит АВ=АД.
АВ=АД=СД, ВС=АД-14 ⇒ Р=4·АД-14,
86=4АД-14,
АД=25 см.
ВМ - высота на сторону АД.
В равнобедренной трапеции АМ=(АД-ВС)/2=14/2=7 см.
В тр-ке АВМ ВМ=√(АВ²-АМ²)=√(25²-7²)=24 см.
ВС=АД-14=25-14=11 см.
Площадь трапеции: S=(АВ+ВС)·ВМ/2=(25+11)·24/2=432 см² - это ответ.
Решение
1. ∢ D=0,5 ∪ EF=30 ° (по свойству вписанного угла).
2. ∢ Е=90 ° (т. к. опирается на диаметр);
cosD= прилежащий катетгипотенуза=DEFD ;
cos30 ° = 3–√2 ;
3–√2 = 1FD ;
3–√ FD = 2⋅1 ;
FD = 23–√ (умножаем на 3–√ , чтобы избавиться от иррациональности в знаменателе);
FD = 2⋅3–√3 см;
2R= FD = 2⋅3–√3 см;
3. C=2R π ;
C= 2⋅3–√3 π см.
4. Подставляем π ≈ 3 :
C= 2⋅3–√3⋅3 ;
C= 2⋅3–√ ;
C= 3,46 см.
ответ: 3.46 см