с контрольной, умоляю.. Я ничего не успеваю(
заранее ставлю все свои ) мне нужно понятное решение (в плане почерка :D)
1. Точки M и N - середины сторон AB и CD параллелограмма ABCD. Докажите, что четырёхугольник AMND - параллелограмм.
2. Биссектриса угла A параллелограмма ABCD делит сторону BC на отрезки BE = a и EC = b. Найдите стороны параллелограмма.
3. Отрезки AB и CD пересекаются в точке O, причём AO : OB = DO : OC. Докажите, что угол DAO = углу огромное тому, кто решит <З
Катеты равны по 10*(√2/2) = 5√2.
Максимальная площадь равна Sмакс = (1/2)*(5√2)² = 50/2 = 25 кв.ед.
Это доказывается так:
Пусть катеты равны х и у.
По Пифагору 10² = х² + у².
Отсюда у = √(100-х²).
Функция площади S = (1/2)x*√(100-х²).
Найдём производную и приравняем нулю.
S' = (50-x²)/√(100-x²) = 0.
Для дроби достаточно приравнять нулю числитель (если знаменатель не равен 0).
50-х² = 0.
х = √50 = 5√2,
у при этом равен √(100-(5√2)²) = √(100-50) = √50 = 5√2.
То есть при равенстве катетов, при этом острые углы треугольника равны по 45 градусов.
Объяснение:
Задача №1.
Давайте примем отрезок BK за x. Тогда отрезок AK будет равен x + 4 cм (потому что AK больше BK на 4 см).
Составляем уравнение:
x + x + 4 = 36
2x = 36 -4
2x = 32
x = 16 см - отрезок BK (потому что BK мы приняли за x).
Теперь можем найти отрезок AK. Из условия задачи известно, что AK больше BK на 4 см.
Следовательно:
AK = BK + 4 cм = 16 см + 4 см = 20 см.
Задача решена.
Задача №2.
Углы ABC и DBC являются смежными, потому что лежат на одной прямой, а две другие прямые являются дополнительными полупрямыми этих углов.
Имеем:
1) ∠ABC + ∠DBC = 180° (по свойству смежных углов)
Чтобы найти эти углы, надо составить уравнение, которое решало бы эту задачу.
Пусть x - это ∠DBC, тогда ∠ABC будет равен x + 38° (угол ABC больше ABD на 38°).
Имеем:
x + x + 38° = 180°
2x = 142
x = 71° - ∠DBC (так как угол DBC мы взяли за x).
Теперь найдем угол ABC:
2) ∠ABC = 71° + 38° = 109°
Так как эти углы делит пополам биссектриса, то углы, образованные при пересечении биссектрисы будут равны.
Чтобы их найти, мы 109 разделим на 2.
3) ∠ADB = 109° : 2 = 54,5°
Задача решена.
Задача №3.
Когда биссектриса делит угол пополам, образовываются другие углы, градусная мера которых будет в два раза меньше.
1) 150° : 2 = 75° - углы, образованные при пересечении луча b.
2) 75 + 40 = 115°