1. Угол между наклонной к плоскости и плоскостью - это угол между наклонной и ее проекцией на плоскость. Искомый угол - угол МАО. Высота правильного треугольника равна h=(√3/2)*a = (√3/2)*2√3=3. АО=(1/3)*h = 1 (свойство медианы). Tg(<MAO) = MO/AO = √3.
ответ: α = arctg√3 = 60°
2. Искомый угол - угол между наклонной и ее проекцией, то есть угол АВК. Sin(<ABK) = KA/KB = AC*tg60/5 = 5√3/11. <ABK = arcsin(0,787) ≈ 51,9°.
3. Опустим перпендикуляры SP и SH из точки S к сторонам АВ и АD соответственно. Прямоугольные треугольники APS и AHS равны по гипотенузе и острому углу. Значит АР=АН и АРОН - квадрат. тогда АО = АН*√2 (диагональ квадрата), АS = 2*АН (в треугольнике ASH катет АН лежит против угла 30°, а AS - гипотенуза). Косинус искомого угла (между наклонной AS и плоскостью АВСD, равного отношению проекции наклонной к наклонной) = АО/AS = АН√2/(2*АН) = √2/2.
1. а) Наклонные КА,КВ,КС и КD равны (дано), значит равны и их проекции на плоскость АВСD. Следовательно, АО=ВО=СО=DO => точка О - точка пересечения диагоналей квадрата, то есть его центр. Что и требовалось доказать.
б) По Пифагору АС=√(AD²+DC²) = √144 =12. ОС = 6.
КО=√(КС²-ОC²) = √(100-36) = 8.
2. Проекция точки М на плоскость АВС - центр О вписанной в треугольник АВС окружности, так как проекции равных наклонных равны. Радиус вписанной окружности найдем по формуле: r = S/p, где S - площадь треугольника, а р - его полупериметр. У нас р = (3√2+3√2+2√2)/2 = 4√2.
По формуле Герона S = √(p*(p-a)(p-b)(p-c). У нас
S= √(4√2*√2*√2*2√2) = 4√2. Тогда r = 4√2/4√2 = 1.
В прямоугольном треугольнике СОН катет ОН=1, катет СН=АС/2 = √2. Тогда по Пифагору ОС = √(1+2) = √3.
Тангенс угла МСО (а это и есть искомый угол, так как угол между наклонной прямой и плоскостью равен углу между этой наклонной и ее проекцией на плоскость) равен отношению противолежащего катета к прилежащему:
МО/ОС = 1/√3. А это угол, равный 60°.
ответ: угол наклона прямой МС к плоскости треугольника равен 60°
1. Угол между наклонной к плоскости и плоскостью - это угол между наклонной и ее проекцией на плоскость. Искомый угол - угол МАО. Высота правильного треугольника равна h=(√3/2)*a = (√3/2)*2√3=3. АО=(1/3)*h = 1 (свойство медианы). Tg(<MAO) = MO/AO = √3.
ответ: α = arctg√3 = 60°
2. Искомый угол - угол между наклонной и ее проекцией, то есть угол АВК. Sin(<ABK) = KA/KB = AC*tg60/5 = 5√3/11. <ABK = arcsin(0,787) ≈ 51,9°.
3. Опустим перпендикуляры SP и SH из точки S к сторонам АВ и АD соответственно. Прямоугольные треугольники APS и AHS равны по гипотенузе и острому углу. Значит АР=АН и АРОН - квадрат. тогда АО = АН*√2 (диагональ квадрата), АS = 2*АН (в треугольнике ASH катет АН лежит против угла 30°, а AS - гипотенуза). Косинус искомого угла (между наклонной AS и плоскостью АВСD, равного отношению проекции наклонной к наклонной) = АО/AS = АН√2/(2*АН) = √2/2.
ответ: искомый угол равен 45°.
1. а) Наклонные КА,КВ,КС и КD равны (дано), значит равны и их проекции на плоскость АВСD. Следовательно, АО=ВО=СО=DO => точка О - точка пересечения диагоналей квадрата, то есть его центр. Что и требовалось доказать.
б) По Пифагору АС=√(AD²+DC²) = √144 =12. ОС = 6.
КО=√(КС²-ОC²) = √(100-36) = 8.
2. Проекция точки М на плоскость АВС - центр О вписанной в треугольник АВС окружности, так как проекции равных наклонных равны. Радиус вписанной окружности найдем по формуле: r = S/p, где S - площадь треугольника, а р - его полупериметр. У нас р = (3√2+3√2+2√2)/2 = 4√2.
По формуле Герона S = √(p*(p-a)(p-b)(p-c). У нас
S= √(4√2*√2*√2*2√2) = 4√2. Тогда r = 4√2/4√2 = 1.
В прямоугольном треугольнике СОН катет ОН=1, катет СН=АС/2 = √2. Тогда по Пифагору ОС = √(1+2) = √3.
Тангенс угла МСО (а это и есть искомый угол, так как угол между наклонной прямой и плоскостью равен углу между этой наклонной и ее проекцией на плоскость) равен отношению противолежащего катета к прилежащему:
МО/ОС = 1/√3. А это угол, равный 60°.
ответ: угол наклона прямой МС к плоскости треугольника равен 60°