С рисунка данного прямоугольника ABCD найди модуль векторов. Известно, что длина сторон прямоугольника AB= 24, BC= 70.
Taisnst_diag_vekt.png
1. ∣∣∣DC−→−∣∣∣ =
.
2. ∣∣∣CD−→−∣∣∣ =
.
3. ∣∣∣DA−→−∣∣∣ =
.
4. ∣∣∣OD−→−∣∣∣ =
.
5. ∣∣∣OA−→−∣∣∣ =
.
6. ∣∣∣CA−→−∣∣∣ =
.
Объяснение:
1.
Дано: ΔАВС.
АВ = ВС;
ВЕ - медиана;
∠АВЕ = 44°
Найти: ∠АВС; ∠FEC.
Рассмотрим ΔАВС.
АВ = ВС ⇒ ΔАВС - равнобедренный.
В равнобедренном треугольнике высота, проведенная к основанию, является медианой и биссектрисой.⇒ ВЕ - высота и биссектриса.
∠АВЕ = ∠ЕВС = 44° (ВЕ - биссектриса)
⇒ ∠АВС = ∠АВЕ + ∠ЕВС = 44° + 44° = 88°
BF ⊥ АС (ВЕ - высота)
⇒ ∠FEC = 90°
2.
Дано: ΔАВС.
АВ = ВС; АО = ОС;
ОК - биссектриса.
Найти: ∠АОК.
Рассмотрим ΔАВС.
АВ = ВС ⇒ ΔАВС - равнобедренный.
АО = ОС ⇒ ВО - медиана.
В равнобедренном треугольнике медиана, проведенная к основанию, является высотой.⇒ ВО - высота, то есть ∠ВОС = 90°.
ОК - биссектриса ⇒ ∠ВОК = ∠КОС = 90° : 2 = 45°
∠АОК = ∠АОВ + ∠ВОК = 90° + 45° = 135°
Геометрически сумма двух векторов,имеющих общее начало, равна длине диагонали параллелограмма,который они образуют ( правило паралллелограмма).А длина этой диагонали равна площади этого же параллелограмма, то есть |a+b|=|a|*|b|*sin30° = 0,5*|a|*|b|.
Теперь сложим вектор а+в и вектор с аналогично.
Площадь построенного параллелограмма на векторах (а+в) и с равна
|a+b|*|c|*sin 30=o,5*|a|*|b|*|c|*0,5=0,25*|a|*|b|*|c|.
Этому же числу будет равна длина вектора (а+в+с).
Чёрточки над векторами поставь сама.