Ориентируйся по рисунку. так как АВС равнобедренный, углы С и В равны по 50. АО - биссектриса, тк О - точка пересечения биссектрис. тогда треугольники АОС и АОВ равны по двум сторонам и углу. следовательно, соответственные элементы тоже равны. угол АВО = 50 - 20 = 30 = углу АСО. тогда угол ОСМ равен 50 - 20 - 10 = 20. если АО -биссектриса, то угол САО равен 40, тогда угол АОС = углу АОВ = углу СОВ = 180 - 40 - 20 = 120. треугольники АОС и СОМ равны по двум углам и стороне (общая - ОС); тогда получаем, что АС = МС, треугольник АСМ - равнобедренный. тогда угол АМС, как угол при основании равен (180-40)/2 = 70
Дано не буду писать. Значит в 1. Угол АВС=180-45-75=60. (45-это угол 90 делит биссектриса и получаем по 45). Теперь ищем угол АСВ через большой треугольник. Он получается 180-90-60=30. Во второй пусть угол у меньшего катета равен 60. тогда напротив угол 30. Пусть гипотенуза будет Х, тогда катет, лежащий против угла в 30 градусов, равен половине гипотенузы и будет Х/2. Уравнение "Х+Х/2=3, Х=2", значит гипотенуза равна 2. В 3 большая сторона лежит напротив большего угла, то есть напротив угла А, а меньшая сторона лежит напротив меньшего угла, то есть напротив угла С. В 4 треугольник ДКЕ прямоугольный, угол ВДК=30, 3 лежит против 30 градусов, значит гипотенуза будет 6. а в большом треугольнике катет 6, лежит против угла 30 и гипотенуза ВЕ=12. КЕ=12-3=9
так как АВС равнобедренный, углы С и В равны по 50. АО - биссектриса, тк О - точка пересечения биссектрис. тогда треугольники АОС и АОВ равны по двум сторонам и углу. следовательно, соответственные элементы тоже равны. угол АВО = 50 - 20 = 30 = углу АСО. тогда угол ОСМ равен 50 - 20 - 10 = 20. если АО -биссектриса, то угол САО равен 40, тогда угол АОС = углу АОВ = углу СОВ = 180 - 40 - 20 = 120.
треугольники АОС и СОМ равны по двум углам и стороне (общая - ОС); тогда получаем, что АС = МС, треугольник АСМ - равнобедренный. тогда угол АМС, как угол при основании равен (180-40)/2 = 70