С. в шар вписан цилиндр, объем которого равен 72п см^3. площадь осевого сечения цилиндра равна 48 см^2.вычислите: а) площадь сферы, ограничивающей шар б) объем одного шарового сегмента, отсеченного плоскостью основания цилиндра.
хорда a=5√2 окружности стягивает дугу в 90 градусов - это значит, центральный угол , который опирается на эту дугу(хорду) равен 90 град
тогда отрезки (хорда +радиус+радиус) образуют прямоугольный равнобедренный треугольник с углом при вершине <O= 90 град ., здесь хорда-основание, радиусы - боковые стороны, углы при основании равны между собой <A=<B= (180-<O) /2 =(180-90) /2 =45град -тогда радиус окружности R =a/√2 = 5√2 /√2= 5
полный круг/окружность - это 360 град , тогда
длина дуги 90 град - 1/4 окружности 1/4*2п*R =п/2 *5 =5п/2
площадь сектора 90 град - 1/4 площади круга 1/4*пR^2=п/4 *25=25п/4
Номер 1. Т.к треугольник прямоугольный, то один из углов 90градусов по опр. Значит т.к треугольник еще и р/б, то по свойству у него два угла при основании равны. Если среди них есть угол в 90градусов то их сумма 180градусов, что противоречит теорема о сумме углов в треугольника, значит эти углы по (180-90)/2=45градусов. ответ:90,45,45 Номер 2. Т.к треугольник CDE - р/б, то угол C равен углу E, значит т.к угол D равен 54градуса, то угол E=(180-54)/2=63градуса. То т.к CF - высота, то угол CFE=90градусов, следовательно угол ECF=180-54-63=63градуса ответ:63градуса Надеюсь все понятно объяснил.
хорда a=5√2 окружности стягивает дугу в 90 градусов - это значит, центральный угол , который опирается на эту дугу(хорду) равен 90 град
тогда отрезки (хорда +радиус+радиус) образуют прямоугольный равнобедренный треугольник с углом при вершине <O= 90 град ., здесь хорда-основание, радиусы - боковые стороны, углы при основании равны между собой <A=<B= (180-<O) /2 =(180-90) /2 =45град -тогда радиус окружности R =a/√2 = 5√2 /√2= 5
полный круг/окружность - это 360 град , тогда
длина дуги 90 град - 1/4 окружности 1/4*2п*R =п/2 *5 =5п/2
площадь сектора 90 град - 1/4 площади круга 1/4*пR^2=п/4 *25=25п/4