Задача сводится к построению треугольника BCD по трем сторонам. Пользуемся тем, что боковые стороны равны и диагонали равны. 1. Проведем прямую а. Отложим на ней отрезок ВС. 2. С центром в точке В проведем дугу с радиусом, равным BD. С центром в точке С проведем дугу с радиусом, равным АВ. Точка пересечения дуг - D. Получили треугольник BCD. 3. С центром в точке В проведем дугу с радиусом, равным АB. С центром в точке С проведем дугу с радиусом, равным ВD. Точка пересечения дуг - A. Соединим точки А, В, С и D. Трапеция построена.
Если каждое ребро параллелепипеда увеличить в два раза, получится подобная ему фигура с коэффициентом подобия 2. Отношение площадей подобных фигур равно квадрату коэффициента подобия. S2:S1=k²=4 Площадь увеличенного параллелепипеда S=4•4=16 ( ед. площади).
Подробно. Площадь поверхности прямоугольного параллелепипеда сумма площади боковой поверхности и площади двух оснований. S1=2ab+h•2(a+b) S2=2(2a•2b)+2h•2(2a+2b)=8ab+2h•4(a+b)=8ab+8h(a+b) Разделив S2 на S1, получим - площадь увеличенной фигуры в 4 раза больше.
1. Проведем прямую а. Отложим на ней отрезок ВС.
2. С центром в точке В проведем дугу с радиусом, равным BD. С центром в точке С проведем дугу с радиусом, равным АВ. Точка пересечения дуг - D.
Получили треугольник BCD.
3. С центром в точке В проведем дугу с радиусом, равным АB. С центром в точке С проведем дугу с радиусом, равным ВD. Точка пересечения дуг - A.
Соединим точки А, В, С и D. Трапеция построена.
Отношение площадей подобных фигур равно квадрату коэффициента подобия.
S2:S1=k²=4
Площадь увеличенного параллелепипеда S=4•4=16 ( ед. площади).
Подробно.
Площадь поверхности прямоугольного параллелепипеда сумма площади боковой поверхности и площади двух оснований.
S1=2ab+h•2(a+b)
S2=2(2a•2b)+2h•2(2a+2b)=8ab+2h•4(a+b)=8ab+8h(a+b)
Разделив S2 на S1, получим - площадь увеличенной фигуры в 4 раза больше.