Сбилетом по 1 . равнобедренный треугольник (определение). свойство углов при основании. 2. постройте тупой угол. с циркуля и линейки разделите угол на четыре равные части. 3 . в треугольнике abc из вершины b проведены медиана bm и высота bd.найдите углы треугольника mbc,если медиана в 2 раза
больше высоты и равна половине стороны ac.
Решить данную задачу в 7 классе невозможно, поскольку она решается через теорему синусов, а это 9 класс! Возможно было бы решить задачу, если бы ∠BAD равнялся 115°, либо ∠BCF равнялся 55°. Тогда бы мы доказали, что ΔABC - равнобедренный и указали бы, что сторона AB равняется 5 см ( по свойству).
Что поделаешь: рассмотрим решение через теорему синусов.
Вертикальные углы равны.
⇒ ∠FCK=∠BCA=65°, так как они вертикальные.
Сумма смежных углов равна 180°.
⇒ ∠BAD+∠BAC=180°, так как они смежные ⇒ ∠BAC=180°-125°=55°.
Сумма углов треугольника равна 180°.
⇒ ∠ABC=180°-(55°+65°)=180°-120°=60°.
Теорема синусов: Стороны треугольника пропорциональны синусам противолежащих углов.
AB:sinBCA=AC:sinABC=BC:sinBAC ⇒
AB=BC*((sinBCA)/(sinBAC)) ⇒
AB=5*((sin65°)/(sin55°))≈5*(0,906/0,819)≈5,5 (см).
ответ: AB≈5,5 (см).
Надо найти z4 - z2; (это - расстояния от точки B до точек касания окружностей с BE)
По условию
z4 + z5 = z1 + z2 + 4;
z1 + z3 = z6 + z5; (точка E - середина AC, AE = CE)
z2 + z3 = z4 + z6; (=BE)
Вычитая из третьего уравнения второе, легко найти
z4 - z5 = z2 - z1;
Если это сложить с первым, то
2*z4 = 2*z2 + 4;
откуда z4 - z2 = 2;