1-рассмотрим треугольники абс и адс. т.к. ад равно аб и и угол дас равен углу бас (по усл) то ас- общая стоона следовательно треугольники равны по трем сторонам, а т.к. треугольники равно то их стороны будут равны. следовательно бсравно дс 2-т.к. ас и дс равны (как диагонали трапеции) следовательно это равнобедренная трапеция. у равнобедренной трапеции 2 стороны равны то следовательно да равно сб3- т.к. абсд это параллелограмм и ДА равно СБ по условию, то следовательно их диагонали будут равны. ас и бд и есть диагонали . следовательно они равны
Рассмотрим плоскость ABD (по А1 существует плоскость ABD). ME- средняя линия треугольника ABD по определению. По А1, BK - середина треугольника BDC (по определению). PK||BD, PK=DB÷2 => PK||DE (по теореме о параллельных прямых). PK=ME=DB%2. По А1: существует такая плоскость MPKE-параллелограм (по первому признаку параллелограмма). MK, De-диагональ, MK=PE (по условию). По А1: MP-средняя линия треугольника ABC. Треугольник EMP-прямоугольный => по теореме Пифагора найдём ME^2=EP^2-MP^2=10^2 - 6^2 =8^2 => ME=8, тогда BD=2*8=16. ОТВЕТ: BD=16
ответ:не знаю как точно вы решаете но вот решение
Объяснение:
1-рассмотрим треугольники абс и адс. т.к. ад равно аб и и угол дас равен углу бас (по усл) то ас- общая стоона следовательно треугольники равны по трем сторонам, а т.к. треугольники равно то их стороны будут равны. следовательно бсравно дс 2-т.к. ас и дс равны (как диагонали трапеции) следовательно это равнобедренная трапеция. у равнобедренной трапеции 2 стороны равны то следовательно да равно сб3- т.к. абсд это параллелограмм и ДА равно СБ по условию, то следовательно их диагонали будут равны. ас и бд и есть диагонали . следовательно они равныРассмотрим плоскость ABD (по А1 существует плоскость ABD). ME- средняя линия треугольника ABD по определению. По А1, BK - середина треугольника BDC (по определению). PK||BD, PK=DB÷2 => PK||DE (по теореме о параллельных прямых). PK=ME=DB%2. По А1: существует такая плоскость MPKE-параллелограм (по первому признаку параллелограмма). MK, De-диагональ, MK=PE (по условию). По А1: MP-средняя линия треугольника ABC. Треугольник EMP-прямоугольный => по теореме Пифагора найдём ME^2=EP^2-MP^2=10^2 - 6^2 =8^2 => ME=8, тогда BD=2*8=16. ОТВЕТ: BD=16