1) Прямоугольник лежит на гипотенузе своей длинной стороной. Обозначим ее 5х, тогда короткая сторона прямоугольника будет 2х. Кусочки гипотенузы слева и справа от стороны прямоугольника будут тоже по 2х,т.к. отсеченные слева и справа части треугольника являются равнобедренными прямоугольными треугольниками. Следовательно длина гипотенузы исходного треугольника будет 5х+2х+2х=9х=45, отсюда х=5. Значит, длинная сторона прямоугольника 5х=25, а короткая 2х=10; 2) Прямоугольник лежит а гипотенузе своей короткой стороной. Обозначим ее 2х, тогда длинная будет 5х. Как и в предыдущем случае отсеченные слева и справа треугольники будут прямоугольными равнобедренными, т.е. оба их катета будут 5х. Тогда гипотенуза будет 5х+5х+2х=12х=45, отсюда х=3,75. Тогда длинная сторона прямоугольника 5х=5*3,75=18,75, а короткая 2х=2*3,75=7,5
Пусть заданы отрезки: АС - сторона треугольника, АК и СМ - его высоты.. Требуется построить треугольник по данным элементам. • 1) На произвольной прямой откладываем отрезок АС, равный данной стороне. • 2) По известному методу деления отрезка пополам находим середину О отрезка АС и из О радиусом, равным АО, чертится окружность. • 3) Из А на построенной окружности отмечаем циркулем точку К ( длина АК равна длине одной из данных высот). Из точки С таким же образом на окружности отмечаем основание М второй высоты. • 4) Из точки А через М проводим прямую, из точки С через К проводим вторую прямую. Точку пересечения этих прямых обозначим В. Треугольник по стороне АС и высотам АК и СМ построен: Длина АС задана условием. Углы АКС и СМА прямые - опираются на АС как на диаметр окружности. Следовательно, АК - высота к ВС, СМ - высота к АВ.
2) Прямоугольник лежит а гипотенузе своей короткой стороной. Обозначим ее 2х, тогда длинная будет 5х. Как и в предыдущем случае отсеченные слева и справа треугольники будут прямоугольными равнобедренными, т.е. оба их катета будут 5х. Тогда гипотенуза будет 5х+5х+2х=12х=45, отсюда х=3,75. Тогда длинная сторона прямоугольника 5х=5*3,75=18,75, а короткая 2х=2*3,75=7,5
Пусть заданы отрезки: АС - сторона треугольника, АК и СМ - его высоты.. Требуется построить треугольник по данным элементам. • 1) На произвольной прямой откладываем отрезок АС, равный данной стороне. • 2) По известному методу деления отрезка пополам находим середину О отрезка АС и из О радиусом, равным АО, чертится окружность. • 3) Из А на построенной окружности отмечаем циркулем точку К ( длина АК равна длине одной из данных высот). Из точки С таким же образом на окружности отмечаем основание М второй высоты. • 4) Из точки А через М проводим прямую, из точки С через К проводим вторую прямую. Точку пересечения этих прямых обозначим В. Треугольник по стороне АС и высотам АК и СМ построен: Длина АС задана условием. Углы АКС и СМА прямые - опираются на АС как на диаметр окружности. Следовательно, АК - высота к ВС, СМ - высота к АВ.