Если рассмотреть один угол четырехугольника ABD, то центр вписанной в угол окружности будет лежать на биссектрисе угла АО... радиусы окружности, проведенные к сторонам угла в точки касания, _|_ сторонам угла (ОК _|_ AB, ОК1 _|_ AD, OK2 _|_ BC) и в каждом углу четырехугольника получатся по 2 равных прямоугольных треугольника с гипотенузой, лежащей на биссектрисе (треугольник АОК=АОК1, треугольник BОК=BОК2)... если рассмотреть сторону четырехугольника АВ и радиус ОК, проведенный в точку касания, то это будут основание и высота треугольника ВОА, площадь которого равна половине площади фигуры К2ОК1АВ т.е. площади фигуры К2ОК1АВ = 2*(r*AB/2) = r*AB аналогично со стороной CD: площади фигуры К2CDК1 = 2*(r*CD/2) = r*CD площадь ABCD = площадь К2ОК1АВ + площадь К2CDК1 = r*(AB+CD) = 4.5*20 = 90
Цитата: "центр О вписанной окружности равноудалён от всех сторон и является точкой пересечения биссектрис треугольника. В равнобедренном треугольнике высота, опущенная на основание, является и биссектрисой и медианой. Значит центр О вписанной окружности лежит на высоте. Тогда радиус вписанной окружности является катетом прямоугольного треугольника, вторым катетом которого является половина основания. Пусть R = половине основания, тогда прямоугольный тр-к будет равнобедренным и половина угла при основании будет равна 45°. Угол при основании тогда =90°, что невозможно. Итак, радиус не может быть равен половине основания, значит и диаметр впмсанной окружности всегда меньше основания данного нам равнобедренного тр-ка, что и требовалось доказать..
радиусы окружности, проведенные к сторонам угла в точки касания,
_|_ сторонам угла (ОК _|_ AB, ОК1 _|_ AD, OK2 _|_ BC) и в каждом углу четырехугольника получатся по 2 равных прямоугольных треугольника с гипотенузой, лежащей на биссектрисе
(треугольник АОК=АОК1, треугольник BОК=BОК2)...
если рассмотреть сторону четырехугольника АВ и радиус ОК, проведенный в точку касания, то это будут основание и высота треугольника ВОА, площадь которого равна половине площади фигуры К2ОК1АВ
т.е. площади фигуры К2ОК1АВ = 2*(r*AB/2) = r*AB
аналогично со стороной CD: площади фигуры К2CDК1 = 2*(r*CD/2) = r*CD
площадь ABCD = площадь К2ОК1АВ + площадь К2CDК1 = r*(AB+CD) =
4.5*20 = 90