1. сначала рисуем основание и от одного из его концов, с циркуля, в сторону направления второй стороны, рисуем полукруг, равный по радиусу этой известной стороне. 2. Затем с циркуля с двух концов основания восстанавливаем перпендикуляры к самому основанию (как это делать Вы знаете). 3. С линейки отмеряем известную высоту на обоих перпендикулярах, начиная от основания. 4 Соединяем вершины высот прямой линией с линейки. Полученная линия параллельна основанию. 5. Место пересечения этой линии и полуокружности - это вершина нужного треугольника. Соединим её с концами основания. 6. С циркуля нарисуем второй полукруг к вершине от другого конца основания так, чтобы оба полукруга пересекались сверху и снизу. Соединим точки их пересечения. Получится высота треугольника.
1. Диагонали ромба взаимно перпендикулярны и делят его углы пополам. Значит<MOK - прямой, <MKO = 80:2=40° Зная, что сумма острых углов прямоугольного треуг-ка КОМ равна 90°, находим угол КМО: <KMO=90-<MKO=90-40=50°
2 а). Рассмотрим треугольник АВМ. Он равнобедренный по условию (АВ=ВМ), значит, углы при его основании АМ равны между собой: <BAM=<BMA <BMA=<DAM как накрест лежащие углы при пересечении двух параллельных прямых AD и ВС секущей АМ, но <BAM=<BMA, значит <BAM=<DAM, т.е. АМ - биссектриса угла BAD. б). Поскольку АВ=ВМ=8 см, то ВС=8+4=12 см Р = 2АВ+2ВС=2*8+2*12=40 см
2. Затем с циркуля с двух концов основания восстанавливаем перпендикуляры к самому основанию (как это делать Вы знаете).
3. С линейки отмеряем известную высоту на обоих перпендикулярах, начиная от основания.
4 Соединяем вершины высот прямой линией с линейки. Полученная линия параллельна основанию.
5. Место пересечения этой линии и полуокружности - это вершина нужного треугольника. Соединим её с концами основания.
6. С циркуля нарисуем второй полукруг к вершине от другого конца основания так, чтобы оба полукруга пересекались сверху и снизу. Соединим точки их пересечения. Получится высота треугольника.
Зная, что сумма острых углов прямоугольного треуг-ка КОМ равна 90°, находим угол КМО:
<KMO=90-<MKO=90-40=50°
2 а). Рассмотрим треугольник АВМ. Он равнобедренный по условию (АВ=ВМ), значит, углы при его основании АМ равны между собой:
<BAM=<BMA
<BMA=<DAM как накрест лежащие углы при пересечении двух параллельных прямых AD и ВС секущей АМ, но <BAM=<BMA, значит <BAM=<DAM, т.е. АМ - биссектриса угла BAD.
б). Поскольку АВ=ВМ=8 см, то ВС=8+4=12 см
Р = 2АВ+2ВС=2*8+2*12=40 см