Сделайте задание, В основі прямокутного паралелепіпеда ABCDA1B1C1D1 лежить квадрат зі стороною 6 см, а його бічне ребро дорівнює 10см. Побудуй переріз паралелепіпеда площиною, що проходить через точку К - середину ребра B1C1 - та пряму BD. Знайди периметр перерізу.
В прямоугольном треугольнике центр описанной окружности лежит на середине гипотенузы, поэтому радиус описанной окружности равен 2,5х. Медиана, проведенная к гипотенузе из вершины прямого угла, делит гипотенузу пополам, т.е. попадает в центр описанной окружности. Зная, что ее длина равна 6, можем найти х:
Периметр треугольника равен 3х+4х+5х=12х, т.е. 12*2,4=28,8
Расстоянием от точки до прямой называет длина перпендикуляра, проведённого из этой точки на прямую. Поэтому надо найти длину перпендикуляра. Пусть длина перпендикуляра равна x, тогда длина наклонной равна y. Составим систему уравнений, учитывая, что x + y = 17, а y - x = 1
x + y = 17 2y = 18 y = 9
y - x = 1 y - x = 1 x = 8
Длина перпендикуляра равна 8, поэтому и искомое расстояние тоже равно 8.