Сечение конуса, проведённое через его вершину, имеет площадь S и пересекает основание по хорде. Образующая конуса, через которую проходит сечение, составляет с данной хордой угол альфа, а с плоскостью основания - угол бетта. Найдите: а) площадь осевого сечения конуса;
б) площадь осевого сечения усечённого конуса, полученного сечением данного конуса плоскостью, проходящей через середину его высоты.
Sбок = 3*(a+b)/2*MN =3*(6+2)/2 *MN =12MN =12h ( замена MN =h).
Сначала рассматриваем равнобедренная (CC₁=B₁B) трапеция CC₁B₁B :
CB =a =6 см , C₁B₁ =b=2 см , MN =h (пока неизвестная ) .
AA₁ =CC₁= BB₁ .
CC₁² =( (a -b)/2)² +h² = ((6-2)/2)² +h² =h²+4 ;
Теперь рассмотриваем трапеция AA₁MN :
AA₁ =CC₁ ; AN =a√3/2 =6√3/2 =3√3 ;A₁M =b√3/2 =2√3/2 =√3;
опустим из вершин A₁ и M перпендикуляры A₁E ┴ AN и MF ┴ AN.
Из ΔMFN :
высота этой трапеции (собственно высота пирамиды)
h₁=A₁E = MF =MN*sinα =h*sinα =h*sin60°=h√3/2 ; NF =MN*cosα = h*cos60°=h/2.
Из ΔAA₁E:
AA₁²= AE² +A₁E² =(2√3 -h/2)² +(h√3/2)² ;
***AN= AE+EF +FC =AE +A₁M +FC ⇔3√3=AE +√3 +h/2 ⇒AE=2√3 - h/2***
h²+4 =12 - 2√3h+h²/4 +3/4h² ⇒ h =4/√3 .
Окончательно :
Sбок = 12h =12*4/√3 =16√3 .
ответ : 16√3.
В общем рассмотрели две трапеции CC₁B₁B и AA₁MN .
Задача 1.
Пусть ВС=CD=х, тогда АВ=3+х. Составим и решим уравнение:
3+х+х+х=9
3х=6
х=2.
Получается, ВС=CD=2 см.
ответ: 2 см.
Задача 2.
∠1=∠3=20 градусов (т.к. соответственные);
∠1=∠4= 20 градусов (т.к. вертикальные);
∠4=90 градусов (по условию)
∠5=180-20=160 градусов.
∠2=160-90=70 градусов.
ответ: 70 градусов.
Задача 3.
Если дочертить отрезки АР, ВР, АО и ВО, можно заметить, что образовался четырехугольник. АВ и РО -его диагонали. Т.к. они точкой пересечения поделились пополам, то данная фигура - ромб. У ромба все стороны равны => АР+ВР=АО+ВО.