Сеня и Ваня играют в игру «крестики-крестики». Игра заключается в том, что Сеня и Ваня по очереди ставят крестики на доску 40×40, при этом нельзя ставить 8 крестиков подряд по вертикали или по горизонтали (по диагонали можно). Какое наибольшее количество крестиков Сеня и Ваня могут поставить на доску?
№1 50 №2 10
Объяснение:
№1
Треугольники ВАО и ОДС- равные (тк боковые стороны являются радиусами, а углы при вершине явл вертикальными и равенство по двум сторонам и углу между ними) и равнобедренные ( тк боковые стороны- радиусы.), значит все углы при основании равны ( свойство углов равнобедренного треугольника) , те угол OAB равен 50 градусов.
№2
В прямоугольной трапеции разность оснований есть проекция боковой стороны на нижнее основание, а она равна половине гтпотенузы, значит
разность длин оснований равна половина от 20, а это 10
Даны координаты вершин треугольника: A(−12;−1); B(0;−10); C(4;12).
1) Находим длину стороны АВ.
АВ (с) = √((Хв-Ха)²+(Ув-Уа)²) = √((0-(-12))²+(-10-(-1))²) = √(144 + 81) =
= √225 = 15.
2) Уравнения сторон AB и ВC и их угловые коэффициенты;
Находим векторы АВ и АС:
АВ: (12; -9), ВС:(4; 22).
Получаем уравнения:
АВ: (х + 12)/12 = (у + 1)/(-9),
ВС: х/4 = (у + 10)/22.
Угловые коэффициенты сторон
Кав = Ув-Уа = -9/12 = -3/4 = -0,75.
Хв-Ха
Квс = Ус-Ув = 22/4 = 11/2 = 5,5.
Хс-Хв
3) Угол В между прямыми AB и BC в радианах (градусах) с точностью до двух знаков после запятой. Находим по теореме косинусов.
Находим длины сторон.
АВ (с) = √((Хв-Ха)²+(Ув-Уа)²) = √225 = 15.
BC (а)= √((Хc-Хв)²+(Ус-Ув)²) = √500 = 10√5 ≈ 22,36068.
Векторы ВА: (-12; 9), ВС:(4; 22).
cos В = (-12*4 + 9*22)/(15*10√5 = 150/(150√5) = √5/5.
В = arc cos(√5/5) ≈ 1,107148718 ≈ 1,11 радиан .
4) Уравнение высоты CD и ее длину.
Находим площадь треугольника по формуле:
S=(1/2)*|(Хв-Ха)*(Ус-Уа)-(Хс-Ха)*(Ув-Уа)|.
Подставив координаты точек, получаем S = 150 кв.ед.
Длина СD = 2S/AB = 2*150/15 = 20.
k(CD) = -1/k(AB) = -1/(-3/4) = 4/3.
Уравнение: у = (4/3)х + в. Подставим координаты точки С.
12 = (4/3)*4 + в, отсюда в = 12 - (16/3) = 20/3.
Уравнение CD: y = (4/3)x + (20/3) .
5) Уравнение медианы AE и координаты точки K пересечения этой медианы с высотой CD .
Точка Е как середина ВС: ((0+4)/2=2; (-10+12)/2=1) = (2; 1).
Вектор АЕ: (14; 2)
Уравнение АЕ: (х + 12)/14 = (у + 1)/2.
Приведём к виду с угловым коэффициентом:
у = (1/7)х + (5/7).
Точка К как пересечение AE и CD.
Приравниваем: (1/7)х + (5/7) = (4/3)x + (20/3),
(-25/21)х = (125/21).
Отсюда х(К) = -5, у(К() = 0.
6) Уравнение прямой L, которая проходит через точку K параллельно стороне AB.
Угловой коэффициент Кав -3/4 сохраняется для прямой L.
Уравнение у = (-3/4)х + в.
Для определения значения в подставим координаты точки К.
0 = (-3/4)*(-5) + в, отсюда в = 0 - 15/4 = (-15/4).
Уравнение у = (-4/3)х - (15/4).
7) Координаты точки F(xF , yF ) , которая находится симметрично точке A относительно прямой CD (это перпендикуляр к АВ).
Находим координаты точки Д как точки пересечения высоты СД и стороны АВ. х(Д) = -8, у(Д) = -4.
Тогда x(F) = 2x(D) - x(A) = -16 -(-12) = -4.
y(F) = 2y(D) - y(A) = -8 -(-1) = -7.