Задача имеет два решения в любом случае. 1) Допустим угол при основании равен 42 градуса, значит другой угол при основании тоже равен 42 градуса ( так как в равнобедренном треугольнике при основании углы равны). Сумма всех углов треугольника равна 180 градусов. Значит третий угол будет равен 180-(42+42)= 96 градусов. Второй случай, когда угол не при основании равен 42 градуса. Так как сумма всех углов треугольника равна 180 градусов, сумма углов при основании будет равна 180-42=138 градусов. А так как они равны, каждый по отдельности будет равен 138:2=69. 2) аналогично первому
1) Допустим угол при основании равен 42 градуса, значит другой угол при основании тоже равен 42 градуса ( так как в равнобедренном треугольнике при основании углы равны). Сумма всех углов треугольника равна 180 градусов. Значит третий угол будет равен 180-(42+42)= 96 градусов.
Второй случай, когда угол не при основании равен 42 градуса. Так как сумма всех углов треугольника равна 180 градусов, сумма углов при основании будет равна 180-42=138 градусов. А так как они равны, каждый по отдельности будет равен 138:2=69.
2) аналогично первому
l - длина дуги,
С - длина окружности,
S - площадь круга,
1.
С = 2πR, ⇒ R = C / (2π)
S = πR² = π · C² / (2π)² = C² / (4π)
2.
Площадь кольца можно найти отняв от площади большего круга площадь меньшего.
Sб = π·25²
Sм = π· 24²
Sкольца = Sб - Sм = π · 25² - π · 24² = π(25² - 24²) = π(25 - 24)(25 + 24)
Sкольца = π · 49 = 49π см²
3.
Sсект = πR² · α / 360°
Sсект = π · 9 · 20° / 360° = π/2 см²
4.
Sсект = πR² · α / 360°
10π = π · 36 · α / 360°
α = 10π · 360° / (36π) = 100°
5.
l = 2πR · α / 360°
l = 2π · 6 · 120° / 360° = 4π дм
6.
l = 2πR · α / 360°
6π = 2πR · 60° / 360°
6 = R / 3
R = 6 · 3 = 18