2. Дано: <EAC=<DCA DF=EF Доказать, что ΔABC-равнобедренный. Док-во: 1. Так как <EAC=<DCA (по условию), то ΔAFC- равнобедренный. Отсюда AF=FC. Так как DC=DF+FC и AE=AF+EF, то DC=AE. 2. ΔDCA=ΔEAC (по 1-ому признаку равенства Δ: DC=EA, <EAC=<DCA (по условию); AC-общая сторона). Из равенства Δ следует, что <DAC=<ECA. <DAC=<BAC <ECA=<BCA. Отсюда <BAC=<BCA. Значит ΔABC-равнобедренный. Что и требовалось доказать.
1. Измерить провести окружность с центром в вершине неразвернутого угла и радиусом, равным длине отрезка. 2. Соединить точки пересечения окружности со сторонами угла. 3. Разделить пополам полученный отрезок для построения биссектрисы. Для этого провести две окружности с центрами в этих точках и радиусом, большим, чем длина соединяющего их отрезка. 2 точки пересечения этих окружностей между собой соединить и провести через них биссектрисы. 4. Точка пересечения получившейся биссектрисы и окружности из 1) пункта и есть наша искомая точка.
ОD - биссектриса <AOB
OF - биссектриса <BOC
<AOD : <FOC =2 : 7
Найти <AOD и <FOC.
Решение:
2 <AOD + 2<FOC=180°
<AOD+<FOC=90°
<AOD=2x
<FOC=7x
2x+7x=90°
9x=90°
x=10°
<AOD=2*10°=20°
<FOC=7*10°=70°
ответ: <AOD=20°
<FOC=70°
2. Дано: <EAC=<DCA
DF=EF
Доказать, что ΔABC-равнобедренный.
Док-во:
1. Так как <EAC=<DCA (по условию), то ΔAFC- равнобедренный. Отсюда
AF=FC.
Так как DC=DF+FC и AE=AF+EF, то DC=AE.
2. ΔDCA=ΔEAC (по 1-ому признаку равенства Δ: DC=EA, <EAC=<DCA (по условию); AC-общая сторона).
Из равенства Δ следует, что <DAC=<ECA.
<DAC=<BAC
<ECA=<BCA.
Отсюда <BAC=<BCA.
Значит ΔABC-равнобедренный.
Что и требовалось доказать.
2. Соединить точки пересечения окружности со сторонами угла.
3. Разделить пополам полученный отрезок для построения биссектрисы. Для этого провести две окружности с центрами в этих точках и радиусом, большим, чем длина соединяющего их отрезка. 2 точки пересечения этих окружностей между собой соединить и провести через них биссектрисы.
4. Точка пересечения получившейся биссектрисы и окружности из 1) пункта и есть наша искомая точка.