серединный перпендикуляр стороны ав равнобедренного треугольника авс ав вс пересекает сторону ас в точке Е. Найдите сторону АС если АВ=14см а периметр треугольника ВЕС = 40см
Відповідь:48 см назвемо прямокутник АBCD, точка перетину діагоналей О, перпендикуляри ОЕ до сторони BA , і перпендикуляр OF до строни AD . OE=7 cм OF=5 см AEOF буде прямокутником, так як є два кути по 90 градусів (кут OFA і OEA), звідси EO=AF , OF=EA AF=7 см трикутний AOD є рівнобедренним і висота OF є і висотою і медіаною і бісектрисрю за властивістю рівнобедр. трикутника. OF ділить сторону AD навпів , AF 7 см , тому FD буде також 7 см 7+7=14 (AD) BC=14 см трикутник BOA також рівнобедр. , тову використовуєм теж цю властивість , BA=10 см CD=10 см 10+10+14+14=48 см ❔
-Ромб — это параллелограмм, который имеет равные стороны. Если у ромба все углы прямые, тогда он называется квадратом. -Основные свойства ромба1. Имеет все свойства параллелограмма2. Диагонали перпендикулярны:
4. Сумма квадратов диагоналей равна квадрату стороны умноженному на четыре:
AC2 + BD2 = 4AB2
5. Точка пересечения диагоналей называется центром симметрии ромба.6. В любой ромб можно вписать окружность.7. Центром окружности вписанной в ромб будет точка пересечения его диагоналей. -Определение. Площадью ромба называется пространство ограниченное сторонами ромба, т.е. в пределах периметра ромба.Формулы определения площади ромба:1. Формула площади ромба через сторону и высоту:
S = a · ha
2. Формула площади ромба через сторону и синус любого угла:
S = a2 · sinα
3. Формула площади ромба через сторону и радиус:
S = 2a · r
4. Формула площади ромба через две диагонали:
S = 1d1d225. Формула площади ромба через синус угла и радиус вписанной окружности:
S = 4r2sinα6. Формулы площади через большую диагональ и тангенс острого угла (tgα) или малую диагональ и тангенс тупого угла (tgβ):
назвемо прямокутник АBCD, точка перетину діагоналей О, перпендикуляри ОЕ до сторони BA , і перпендикуляр OF до строни AD .
OE=7 cм
OF=5 см
AEOF буде прямокутником, так як є два кути по 90 градусів (кут OFA і OEA), звідси EO=AF , OF=EA
AF=7 см
трикутний AOD є рівнобедренним і висота OF є і висотою і медіаною і бісектрисрю за властивістю рівнобедр. трикутника. OF ділить сторону AD навпів , AF 7 см , тому FD буде також 7 см
7+7=14 (AD)
BC=14 см
трикутник BOA також рівнобедр. , тову використовуєм теж цю властивість , BA=10 см
CD=10 см
10+10+14+14=48 см ❔
-Основные свойства ромба1. Имеет все свойства параллелограмма2. Диагонали перпендикулярны:
AC┴BD
3. Диагонали являются биссектрисами его углов:∠BAC = ∠CAD, ∠ABD = ∠DBC, ∠BCA = ∠ACD, ∠ADB = ∠BDC
4. Сумма квадратов диагоналей равна квадрату стороны умноженному на четыре:AC2 + BD2 = 4AB2
5. Точка пересечения диагоналей называется центром симметрии ромба.6. В любой ромб можно вписать окружность.7. Центром окружности вписанной в ромб будет точка пересечения его диагоналей.-Определение. Площадью ромба называется пространство ограниченное сторонами ромба, т.е. в пределах периметра ромба.Формулы определения площади ромба:1. Формула площади ромба через сторону и высоту:
S = a · ha
2. Формула площади ромба через сторону и синус любого угла:S = a2 · sinα
3. Формула площади ромба через сторону и радиус:S = 2a · r
4. Формула площади ромба через две диагонали:S = 1d1d225. Формула площади ромба через синус угла и радиус вписанной окружности:
S = 4r2sinα6. Формулы площади через большую диагональ и тангенс острого угла (tgα) или малую диагональ и тангенс тупого угла (tgβ):
S = 1d12 · tg(α/2)2S = 1d22 · tg(β/2)2