піраміда КАВСД, К-вершина, АВСД-квадрат, О-центр основи-перетин діагоналей, КА=КВ=КС=КД=8, кут КАС=60=кут КСА, тоді кут АКС в трикутнику АКС=180-60-60=60, трикутник АКС рівносторонній, КА=КС=АС=8, АД=корінь(АС в квадраті/2)=корінь(64/2)=4*корінь2
проводимо апофему КН на АД, КН-висота=медіані, АН=НД=1/2АД=4*корінь2/2=2*корінь2, трикутник АКН прямокутний, КН=корінь(КА в квадраті-АН в квадраті)=корінь(64-8)=2*корінь14
Если три стороны одного треугольника равны соответственно трем сторонам другого треугольника, то такие треугольники равны. Пусть треугольники ABC и A1B1C1 такие, что AB=A1B1, AC=A1C1, BC=B1C1. Требуется доказать, что треугольники равны. Доказываю. Допустим, что треугольники не равны. Тогда ∠ A ≠ ∠ A1, ∠ B ≠ ∠ B1, ∠ C ≠ ∠ C1 одновременно. Иначе треугольники были бы равны по первому признаку. Пусть треугольник A1B1C2 – треугольник, равный треугольнику ABC, у которого вершина С2 лежит в одной полуплоскости с вершиной С1 относительно прямой A1B1. Пусть D – середина отрезка С1С2. треугольники A1C1C2 и B1C1C2 равнобедренные с общим основанием С1С2. Поэтому их медианы A1D и B1D являются высотами. Значит, прямые A1D и B1D перпендикулярны прямой С1С2. Прямые A1D и B1D не совпадают, так как точки A1, B1, D не лежат на одной прямой. Но через точку D прямой С1С2 можно провести только одну перпендикулярную ей прямую. Мы пришли к противоречию. Теорема доказана.
піраміда КАВСД, К-вершина, АВСД-квадрат, О-центр основи-перетин діагоналей, КА=КВ=КС=КД=8, кут КАС=60=кут КСА, тоді кут АКС в трикутнику АКС=180-60-60=60, трикутник АКС рівносторонній, КА=КС=АС=8, АД=корінь(АС в квадраті/2)=корінь(64/2)=4*корінь2
проводимо апофему КН на АД, КН-висота=медіані, АН=НД=1/2АД=4*корінь2/2=2*корінь2, трикутник АКН прямокутний, КН=корінь(КА в квадраті-АН в квадраті)=корінь(64-8)=2*корінь14
бічна поверхня=1/2*периметрАВСД*КН=1/2*4*4*корінь2*2*корінь14=16*корінь28=32*корінь7
Доказываю.
Допустим, что треугольники не равны. Тогда ∠ A ≠ ∠ A1, ∠ B ≠ ∠ B1, ∠ C ≠ ∠ C1 одновременно. Иначе треугольники были бы равны по первому признаку. Пусть треугольник A1B1C2 – треугольник, равный треугольнику ABC, у которого вершина С2 лежит в одной полуплоскости с вершиной С1 относительно прямой A1B1. Пусть D – середина отрезка С1С2. треугольники A1C1C2 и B1C1C2 равнобедренные с общим основанием С1С2. Поэтому их медианы A1D и B1D являются высотами. Значит, прямые A1D и B1D перпендикулярны прямой С1С2. Прямые A1D и B1D не совпадают, так как точки A1, B1, D не лежат на одной прямой. Но через точку D прямой С1С2 можно провести только одну перпендикулярную ей прямую. Мы пришли к противоречию. Теорема доказана.