Внешний угол правильного многоугольника и его внутренний угол являются смежными, значит, их сумма равна 180°.
Т.к. по условию задачи внутренний угол в 8 раз больше внешнего, то пусть внешний угол х°, тогда внутренний угол будет равен (8х)° (см. рис.). Составим и решим уравнение:
Δ ABC является подобным ΔАКР по первому признаку подобия треугольников (Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны): ∟АРК = ∟АСВ, а ∟АКР = ∟АВС по теореме об углах, образованных двумя параллельными прямыми и секущей (Если две параллельные прямые пересечены секущей, то соответственные углы равны.) АК относится к KB как 2:1, АВ = 9 см., значит АК = 6 см. Коэффициент подобия равен АК:АВ = 2/3 Отсюда: АК/АВ = АР/АС = РК/СВ = 2/3РК= 2/3*СВ=2/3*12 = 8 см.АР = 2/3*АС=2/3*15 = 10 см.Периметр ΔАКР = АК + РК + АР = 6 + 8 + 10 = 24 см. Детальніше - на -
Внешний угол правильного многоугольника и его внутренний угол являются смежными, значит, их сумма равна 180°.
Т.к. по условию задачи внутренний угол в 8 раз больше внешнего, то пусть внешний угол х°, тогда внутренний угол будет равен (8х)° (см. рис.). Составим и решим уравнение:
х + 8х = 180.
9х = 180,
х = 180 : 9,
х = 20.
Значит, внутренний угол правильного многоугольника равен
8 · 20° = 160°.
Внутренний угол правильного многоугольника находят по формуле:
180° · (n - 2) / n, где n - число сторон правильного многоугольника.
Имеем:
180° · (n - 2) / n = 160°,
180° · (n - 2) =160° · n,
9 · (n - 2) = 8 · n,
9n - 18 = 8n,
9n - 8n = 18,
n = 18.
Значит, наш правильный многоугольник имеет 18 сторон.
ответ: 18 сторон.
АК относится к KB как 2:1, АВ = 9 см., значит АК = 6 см. Коэффициент подобия равен АК:АВ = 2/3 Отсюда: АК/АВ = АР/АС = РК/СВ = 2/3РК= 2/3*СВ=2/3*12 = 8 см.АР = 2/3*АС=2/3*15 = 10 см.Периметр ΔАКР = АК + РК + АР = 6 + 8 + 10 = 24 см.
Детальніше - на -