Сформулируйте свойство биссектрисы треугольника. (Рис., пояснения).
4. Сформулируйте и докажите теорему о площади треугольника.
5. Решите задачу. Найдите площадь параллелограмма с основанием 5см и высотой 4см.
6. Решите задачу. В равнобедренной трапеции основания равны 2см и 20см, а боковая сторона 15см. Найдите синус и косинус острого угла трапеции.
13. Расстоянием от точки до прямой является перпендикуляр от этой точки к прямой.
Прямоугольные треугольники ΔМСА и ΔМКА равны по общей гипотенузе и острому углу. Соответственные элементы в треугольниках равны. Следовательно, и МС=МК=13см.
ответ: 13см.
14. Расстоянием от точки до прямой является перпендикуляр от этой точки к прямой.
Прямоугольные треугольники ΔКАМ и ΔЕАМ равны по общей гипотенузе АМ и острым углам. Соответственные элементы равны. Следовательно, МЕ=МК=13см.
ответ: 13см.
15. Катет, лежащий против угла в 30° равен половине гипотенузы.
Угол А = 180-(40+40+70)=30°. Гипотенуза МА = 14см. МD = 14:2 = 7см.
ответ: 7см.
16. Катет, лежащий против угла в 30° равен половине гипотенузы.
Треугольник ВМА р/б, МN - биссектриса. Треугольник СВМ равносторонний, все углы по 60°. Угол ВМD=30°. Следовательно, ∠СВА = 90°. Угол А = 90°-60°=30°.
Аналогично 15 задаче - 8:2=4см.
ответ: 4см.
13. Расстоянием от точки до прямой является перпендикуляр от этой точки к прямой.
Прямоугольные треугольники ΔМСА и ΔМКА равны по общей гипотенузе и острому углу. Соответственные элементы в треугольниках равны. Следовательно, и МС=МК=13см.
ответ: 13см.
14. Расстоянием от точки до прямой является перпендикуляр от этой точки к прямой.
Прямоугольные треугольники ΔКАМ и ΔЕАМ равны по общей гипотенузе АМ и острым углам. Соответственные элементы равны. Следовательно, МЕ=МК=13см.
ответ: 13см.
15. Катет, лежащий против угла в 30° равен половине гипотенузы.
Угол А = 180-(40+40+70)=30°. Гипотенуза МА = 14см. МD = 14:2 = 7см.
ответ: 7см.
16. Катет, лежащий против угла в 30° равен половине гипотенузы.
Треугольник ВМА р/б, МN - биссектриса. Треугольник СВМ равносторонний, все углы по 60°. Угол ВМD=30°. Следовательно, ∠СВА = 90°. Угол А = 90°-60°=30°.
Аналогично 15 задаче - 8:2=4см.
ответ: 4см.