MP и MK - перпендикуляры, значит <MKC=<MPC=90°, т.е. сумма этих двух противоположных друг другу углов равна 180°. Значит и сумма оставшихся двух (тоже противоположных другу другу) углов будет равна 180°, поскольку сумма углов четырёхугольника равна 360°.
Вокруг четырехугольника окружность можно описать только если сумма противоположных углов равна 180°.
Это условие выполняется, значит вокруг четырёхугольника MPCK можно описать окружность.
Также, поскольку, например, <MKC=90°, и он вписанный, значит СМ - диаметр (Плоский угол, опирающийся на диаметр окружности, — прямой).
Объяснение:
MP и MK - перпендикуляры, значит <MKC=<MPC=90°, т.е. сумма этих двух противоположных друг другу углов равна 180°. Значит и сумма оставшихся двух (тоже противоположных другу другу) углов будет равна 180°, поскольку сумма углов четырёхугольника равна 360°.
Вокруг четырехугольника окружность можно описать только если сумма противоположных углов равна 180°.
Это условие выполняется, значит вокруг четырёхугольника MPCK можно описать окружность.
Также, поскольку, например, <MKC=90°, и он вписанный, значит СМ - диаметр (Плоский угол, опирающийся на диаметр окружности, — прямой).
Объяснение:
2) ∠MNP + ∠N = 180° - как смежные
∠N = 180° - ∠MNP = 180° - 135° = 45°
ΔMNK - равнобедренный, значит ∠M = ∠N = 45°
ответ: 45°
3) ΔАВС прямоугольный, значит АС и ВС - катеты, АВ - гипотенуза
∠А = 30°, а катет, лежащий напротив угла в 30° равен половине гипотенузы ⇒ ВС = 12 / 2 = 6 см
АС² + ВС² = АВ² (по теореме Пифагора) ⇒ АС² = АВ² - ВС²
АС² = 12² - 6² = 144 - 36 = 108
АС = √108 ≈ 10 см
ответ: 10 см
4) ΔАВС прямоугольный, значит АС и ВС - катеты, АВ - гипотенуза
∠В = 30°, а катет, лежащий напротив угла в 30° равен половине гипотенузы ⇒ АВ = 7.5 * 2 = 15 см
ответ: 15 см
5)∠А = ∠МАN - как вертикальные ⇒ ∠А = 27°
Сумма углов треугольника равна 180°
ΔАВС = 180° = ∠А + ∠В + ∠С
∠А = 180° - 90° - 27° = 63°
ответ: 63°