Основание треугольника, средняя линия, половины боковых сторон, прилегающие к основанию (не к вершине) образуют равнобокую трапецию суммы длин противоположных сторон трапеции равны если а - боковая сторона треугольника, а/2 - боковая сторона трапеции, b - нижнее основание треугольника (и трапеции) b/2 - средняя линия треугольника (верхнее основание трапеции), то а/2+а/2=b+b/2 значит 4a=3b - соотношение, связывающее длины боковых сторон (а) и длину основания (b) такого треугольника можно еще и угол у основания найти cos(alpha)=(b/2)/a=2/3
В первой задаче пользуемся формулой: площадь треугольника равна произведению его сторон на синус угла между ними, в итоге получаем 6*6*корень из 3, деленное на 2. Решаем, получаем 18 корней из 3. Во второй задаче площадь трапеции находится по формуле: полусумма оснований умножить на высоту. Нам не известна высота, но её находим через получившийся треугольник ABH, где Н=90 гр., А=30 гр. Получается, через синус угла А находим сторону ВН, которая получается равной 8 см. И уже по формуле площади находим её: 12+20/2*8=128 см.
суммы длин противоположных сторон трапеции равны
если а - боковая сторона треугольника, а/2 - боковая сторона трапеции, b - нижнее основание треугольника (и трапеции) b/2 - средняя линия треугольника (верхнее основание трапеции), то а/2+а/2=b+b/2
значит 4a=3b - соотношение, связывающее длины боковых сторон (а) и длину основания (b) такого треугольника
можно еще и угол у основания найти
cos(alpha)=(b/2)/a=2/3
Во второй задаче площадь трапеции находится по формуле: полусумма оснований умножить на высоту. Нам не известна высота, но её находим через получившийся треугольник ABH, где Н=90 гр., А=30 гр. Получается, через синус угла А находим сторону ВН, которая получается равной 8 см. И уже по формуле площади находим её: 12+20/2*8=128 см.
Могу ошибиться в вычислениях.