В прямоугольном треугольнике АБС с наибольшей стороной АВ угол А больше угла В на 30. Центр окружности, описанной около данного треугольника, удален от стороны ВС на 7 см. найдите расстояние от центра описанной окружности до вершины С
Решение: основания трапеции не могут быть одинаковой длины, следовательно даны длины меньшего основания и боковых сторон: АВ = ВС = СЕ = 6 см, значит трапеция равнобокая, ∠ВСЕ = ∠АВС = 120°
Опустим высоты ВМ и СК. Высоты трапеции перпендикулярны основаниям ⇒ ВСКМ - прямоугольник, отсюда: МК = ВС = 6 см
Рассмотрим треугольники АВМ и ЕСК: ∠АВМ = ∠ЕСК = 120 - 90 = 30° В прямоугольном треугольнике, катет, лежащий против угла 30° равен половине гипотенузы, отсюда: АМ = АВ/2 = 6/2 = 3 см КЕ = СЕ/2 = 6/2 = 3 см
АЕ = АМ + МК + КЕ = 3 + 6 + 3 = 12 см
Средняя линия трапеции равна полусумме оснований, отсюда: РО = (ВС + АЕ)/2 = (6 + 12)/2 = 9 см
Трапецию с двумя вершинами по 90 градусов не вписать в правильный 16-и угольник. зато можно вписать четырёхугольника, у которого два противоположных угла по 90° Рассмотрим диагональ такого четырёхугольника, проведённую из вершины тупого угла в острый угол. Квадраты под запретом по условию. Эта диагональ является одновременно диаметром описанной окружности 16-и угольника и четырёхугольника, и гипотенузой двух прямоугольных треугольников, на которые диагональ делит четырёхугольник. Всего диагоналей возможно 16/2=8 С каждой стороны от диагонали возможны 7 точек расположения прямого угла. И всего четырёхугольников возможно 7*7*8=49*8=392
АЕ || ВС
∠АВС = 120°
Решение:
основания трапеции не могут быть одинаковой длины, следовательно даны длины меньшего основания и боковых сторон:
АВ = ВС = СЕ = 6 см, значит трапеция равнобокая,
∠ВСЕ = ∠АВС = 120°
Опустим высоты ВМ и СК.
Высоты трапеции перпендикулярны основаниям ⇒ ВСКМ - прямоугольник, отсюда: МК = ВС = 6 см
Рассмотрим треугольники АВМ и ЕСК:
∠АВМ = ∠ЕСК = 120 - 90 = 30°
В прямоугольном треугольнике, катет, лежащий против угла 30° равен половине гипотенузы, отсюда:
АМ = АВ/2 = 6/2 = 3 см
КЕ = СЕ/2 = 6/2 = 3 см
АЕ = АМ + МК + КЕ = 3 + 6 + 3 = 12 см
Средняя линия трапеции равна полусумме оснований, отсюда:
РО = (ВС + АЕ)/2 = (6 + 12)/2 = 9 см
ответ: 9 см.
Рассмотрим диагональ такого четырёхугольника, проведённую из вершины тупого угла в острый угол. Квадраты под запретом по условию. Эта диагональ является одновременно диаметром описанной окружности 16-и угольника и четырёхугольника, и гипотенузой двух прямоугольных треугольников, на которые диагональ делит четырёхугольник.
Всего диагоналей возможно 16/2=8
С каждой стороны от диагонали возможны 7 точек расположения прямого угла.
И всего четырёхугольников возможно
7*7*8=49*8=392