Шеңбер бойында жататын А нүктесі арқылы АВ диаметрі мен АС хордасы жүргізілген. АС хордасы 9 см жəне ВАС бұрышы 300 тең. АВ диаметріне перпендикуляр СD хордасы жүргізілген жəне олар E нүктесінде қиылысады. СD хордасының ұзындығын табыңыз
Обозначим BC за x. По теореме синусов sin<a/BC=sin<b/AB=sin<c/AC. sin<c=sin<90=1, из чего следует, что AB/sin<90=25/1 равно sin<a/BC=0,6/x. Найдем x по пропорции: x=25*0,6=15.
По теореме Пифагора найдем сторону AC: AC^2=AB^2-BC^2=25^2-15^2=625-225=400; AC=20.
Площадь прямоугольного треугольника находится по формуле AC*BC/2. S=15*20/2=300/2=150.
Площадь любого треугольника можно найти по формуле A*H/2, где A-сторона, а H-опущенная на нее высота. В нашем случае S=AB*CH/2. Выразим CH: CH=S*2/AB; CH=150*2/25=300/25=12.
На сторонах ВС и АD параллелограмма АВСD отложены равные отрезки ВК и DM, докажи что АКСМ- параллеограм.
Объяснение:
1) Т.к. АВСD параллелограмм , то ∠В=∠D ,АВ=СD.
2) ΔАВК=ΔСDM по двум сторонам и углу между ними : ∠В=∠D ,АВ=СD и ВК=DK по условию. В равных треугольниках соответственные элементы равны →АК=СМ.
3) КС=ВС-ВК
║ ║
АМ=AD-АМ ⇒
КС=АМ ( из длин равных отрезков ВС и АD вычитаем длины равных отрезков ВК и DM )
4) По признаку параллелограмма " если противоположные стороны четырехугольника попарноравны, то этот четырехугольник — параллелограмм" , АВСD-параллелограмм.
CH=12
Объяснение:
Обозначим BC за x. По теореме синусов sin<a/BC=sin<b/AB=sin<c/AC. sin<c=sin<90=1, из чего следует, что AB/sin<90=25/1 равно sin<a/BC=0,6/x. Найдем x по пропорции: x=25*0,6=15.
По теореме Пифагора найдем сторону AC: AC^2=AB^2-BC^2=25^2-15^2=625-225=400; AC=20.
Площадь прямоугольного треугольника находится по формуле AC*BC/2. S=15*20/2=300/2=150.
Площадь любого треугольника можно найти по формуле A*H/2, где A-сторона, а H-опущенная на нее высота. В нашем случае S=AB*CH/2. Выразим CH: CH=S*2/AB; CH=150*2/25=300/25=12.
ответ: 12
На сторонах ВС и АD параллелограмма АВСD отложены равные отрезки ВК и DM, докажи что АКСМ- параллеограм.
Объяснение:
1) Т.к. АВСD параллелограмм , то ∠В=∠D ,АВ=СD.
2) ΔАВК=ΔСDM по двум сторонам и углу между ними : ∠В=∠D ,АВ=СD и ВК=DK по условию. В равных треугольниках соответственные элементы равны →АК=СМ.
3) КС=ВС-ВК
║ ║
АМ=AD-АМ ⇒
КС=АМ ( из длин равных отрезков ВС и АD вычитаем длины равных отрезков ВК и DM )
4) По признаку параллелограмма " если противоположные стороны четырехугольника попарноравны, то этот четырехугольник — параллелограмм" , АВСD-параллелограмм.